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Executive Summary 

 

The Hazardous Weather Testbed (HWT) is a space in the National Weather Center 
Building in Norman, Oklahoma that facilitates forecasting experiments testing new 
concepts, tools, and algorithms developed at NOAA’s National Severe Storms Laboratory 
(NSSL), Storm Prediction Center (SPC), and their partner institutions. Conducted 
annually during the peak severe weather season since 2000, the Spring Forecasting 
Experiment, or SFE, is the longest running HWT experiment. The SFEs are co-led by 
SPC and NSSL and aim to accelerate research to operations through testing new severe 
weather prediction tools and forecasting methods, studying how end-users apply severe 
weather guidance, and facilitating experiments for optimizing convection-allowing model 
ensemble design to inform NOAA’s Unified Forecast System (UFS). The wealth of severe 
weather forecasting and research expertise at the National Weather Center, combined 
with state-of-the-art visualization tools, well-designed experiments, and valuable 
collaborations have made the annual SFEs one of the most productive and well-respected 
weather forecasting experiments in the world. SFE 2023 results have particular 
importance as NOAA’s UFS initiative moves forward with the Rapid Refresh Forecast 
System (RRFS), NOAA’s first formally designed convection-allowing model ensemble, 
which is scheduled for operational implementation in 2025. 

 

 

Figure 1. Scenes from the 2023 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. 
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1. Introduction 

 

 The 2023 Spring Forecasting Experiment (2023 SFE) was conducted from 1 May 
– 2 June by the Experimental Forecast Program (EFP) of the NOAA/Hazardous Weather 
Testbed (HWT), and was co-led by the NWS/Storm Prediction Center (SPC) and 
OAR/National Severe Storms Laboratory (NSSL). Additionally, important contributions of 
convection-allowing models (CAMs) were made by NOAA collaborators: Global Systems 
Laboratory (GSL), Environmental Modeling Center (EMC), and Geophysical Fluid 
Dynamics Laboratory (GFDL); and the National Center for Atmospheric Research 
(NCAR) and the National Aeronautics and Space Administration (NASA).  Participants 
included over 127 forecasters, researchers, model developers, university faculty, and 
graduate students from around the world (see Table A1 in the Appendix).  After three 
years of virtual experiments, SFE 2023 marked a return to in-person participation and 
was also the first hybrid SFE, with 50 of the 127 participants contributing remotely. As in 
previous years, the 2023 SFE aimed to test emerging concepts and technologies 
designed to improve the prediction of hazardous convective weather, consistent with the 
Forecasting a Continuum of Environmental Threats (FACETs; Rothfusz et al. 2018) and 
Warn-on Forecast (WoF; Stensrud et al. 2009) visions. Below are goals from the 2023 
HWT SFE for product and service improvements and applied science activities. 

 

Product and Service Improvements: 

• Explore the ability to provide enhanced information on the conditional intensity of 
tornado, wind, and hail events by delineating areas expected to fall within four 
conditional intensity groups (CIG) defined as: no CIG, CIG 0, CIG 1, and CIG 2, 
for experimental outlooks covering Days 1, 2, & 3. 

• Explore the ability to provide enhanced probabilistic information for Day 4 lead 
times by producing experimental outlooks for any type of severe hazard similar to 
current operational Day 3 outlooks. 

• Test the utility of WoFS for updating coverage and conditional intensity full-period 
hazards forecasts valid 2100-1200 UTC. 

• Explore how WoFS and other CAMs can be used in watch-to-warning scale 
forecasting applications with two separate activities focused on using this 
guidance for generating Mesoscale Discussions (MDs). 

 

Applied Science Activities: 

• Calibrated Guidance: 

o Evaluate the utility of several methods, including machine-learning 
approaches, for producing calibrated hazard guidance based on the 
HREF. 
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o Compare and assess ML-based hazard probabilities using High-
Resolution Rapid Refresh (HRRR) forecasts as input with and without 
convective mode information in the predictors. 

o Evaluate and compare two different methods for producing calibrated 
severe weather guidance at 3-7 day lead times using random forests with 
predictors from the Global Ensemble Forecast System (GEFS). 

• Deterministic CAMs: 

o Scrutinize differences between the RRFS control member and the 
operational HRRR. 

o Conduct direct comparisons of storm attribute and environment fields in 
RRFS and HRRR for short lead times in which the data assimilation 
strongly impacts the forecasts, and longer lead times in which the data 
assimilation is less important. 

o Compare and assess the skill and utility of the primary deterministic CAMs 
provided by each SFE 2023 collaborator for Day 1 & 2 lead times. 

o Evaluate three configurations of MPAS runs initialized from HRRR or 
RRFS. 

o Examine whether decreasing horizontal grid-spacing from 3- to 1-km in 
Weather Research and Forecasting (WRF) model simulations provides 
benefits for tornado prediction and the strength of convective wind gusts. 

• CAM Ensembles: 

o Compare various versions of the Rapid Refresh Forecast System (RRFS) 
ensemble to identify strengths and weaknesses of different configuration 
strategies. These comparisons were conducted within the framework of 
the Community Leveraged Unified Ensemble discussed below. Additional 
baseline comparisons were made using the operational High-Resolution 
Ensemble Forecast System version 3 (HREFv3). 

o Evaluate and compare the utility of global-with-nest CAM ensemble 
configurations using the Finite Volume Cubed Sphere (FV3) model and 
the Model for Prediction Across Scales (MPAS) for medium range severe 
weather prediction (i.e., Days 3-7). 

• Analyses: 

o Compare and assess different versions of the 3D real-time mesoscale 
analysis (3D-RTMA) system that use different sources for the background 
first guess. 

o Test WoFS-based analyses of 80-m maximum winds, 2-5 km AGL updraft 
helicity, and column-maximum updraft speed as a potential verification 
source for severe weather. 

• Funded Projects: 
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o Compare and assess different machine-learning approaches for 
estimating the likelihood of wind damage reports being associated with 
gusts ≥ 50 knots. 

o Assess the utility of grid-based, ML-derived probabilities that use input 
from ProbSevere and WoFS to produce short-term calibrated severe 
hazard guidance at lead times up to 3 hours. 

 

A suite of state-of-the-art experimental CAM guidance contributed by our large 
group of collaborators was critical to the 2023 SFE. For the eighth consecutive year, these 
contributions were formally coordinated into a single ensemble framework called the 
Community Leveraged Unified Ensemble (CLUE; Clark et al. 2018). The 2023 CLUE was 
constructed by having all groups coordinate as closely as possible on model 
specifications (e.g., version, grid-spacing, vertical levels, physics, etc.), domain, and post-
processing so that the simulations contributed by each group could be used in controlled 
experiments. This design allowed us to conduct several experiments to aid in identifying 
optimal configuration strategies for CAM-based ensembles. The 2023 CLUE included 40 
members using 3-km grid-spacing, as well as a single member using 1-km grid-spacing, 
which allowed for several unique experiments. The 2023 SFE activities also involved 
testing the WoFS for the seventh consecutive year. More information on all of the 
modeling systems run for the 2023 SFE is given below. 

This document summarizes the activities, core interests, and preliminary findings 
of the 2023 SFE. More detailed information on the organizational structure and mission 
of the HWT, model and ensemble configurations, and information on various forecast 
tools and diagnostics can be found in the operations plan 
(https://hwt.nssl.noaa.gov/sfe/2023/docs/HWT_SFE2023_operations_plan_v2.pdf). The 
remainder of this document is organized as follows: Section 2 provides an overview of 
the models and ensembles examined during the 2023 SFE along with a description of the 
daily activities, Section 3 reviews the preliminary findings of the 2023 SFE, and Section 
4 contains a summary of these findings and some directions for future work. 

 

2.  Description 

2.1 Experimental Models and Ensembles 

 

 A total of 69 unique CAMs were run for the 2023 SFE, of which 41 were a part of 
the CLUE system.  Other CAMs outside of the CLUE were contributed by NSSL (WoFS) 
and EMC (HREFv3).  Forecasting activities during the 2023 SFE emphasized the use of 
CAM ensembles [i.e., HREF, Rapid Refresh Forecasting System (RRFS) prototypes, and 
WoFS] in generating experimental probabilistic forecasts of individual severe weather 
hazards.  Additionally, the 2023 CLUE configuration enabled numerous scientific 
evaluations focusing on model sensitivities and various ensemble configuration 
strategies. 

To put the volume of CAMs run for 2023 SFE into context, Figure 2 shows the 
number of CAMs run for SFEs since 2007, which was the first year CAM ensembles were 
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contributed to the SFE.  In general, Figure 2 shows an increasing trend through 2019 and 
then stabilization around 75 CAMs. The consolidation of members into the CLUE has 
made this large volume of CAMs more manageable and has facilitated more controlled 
scientific comparisons.   

 
Figure 2. Number of CAMs run for SFEs since 2007.  The different colored stacked bars indicate the contributing 
agencies. 

 

2.1.1 The Community Leveraged Unified Ensemble (CLUE) 

 

 The 2023 CLUE is a carefully designed ensemble with subsets of members 
contributed by NOAA groups at NSSL, GFDL, GSL, and EMC, and the non-NOAA groups 
of NCAR and NASA.  The 40 CLUE members with 3-km grid-spacing have a CONUS 
domain, while the single 1-km member has a 2/3 CONUS domain. Depending on the 
CLUE subset, forecast lengths range from 18 to 192 h.  To ensure consistent post-
processing, visualization, and verification, CLUE contributors output all model fields to the 
same grid using the Unified Post Processor (UPP; available at 
http://www.dtcenter.org/upp/users/downloads/index.php). All groups output a set of 
storm-based, hourly-maximum diagnostics including fields such as updraft helicity (UH) 
over various layers, updraft speed, and hail size, as well as standard CAM diagnostics 
like simulated reflectivity and precipitation. A full list of members, output fields, and further 
details on ensemble configurations are provided in the 2023 operations plan 
(https://hwt.nssl.noaa.gov/sfe/2023/docs/HWT_SFE2023_operations_plan_v2.pdf).  
Table 1 provides a summary of each CLUE subset.    
 

http://www.dtcenter.org/upp/users/downloads/index.php
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Clue Subset # of 
mems 

IC/LBC 
perts 

Mixed 
Physics 

Data Assimilation Dynamical 
Core 

Agency Init. Times 
(UTC) 

Forecast 
Length (h) 

Domain 

RRFS 10 EnKF no Hybrid 3DEnVar FV3 EMC/GSL 00-23 60/18 CONUS 

RRFSphys 9 EnKF yes Hybrid 3DEnVar FV3 EMC/GSL 00-23 60/18 CONUS 

NSSL1 1 none no HRRR ICs ARW NSSL 00 36 2/3 CONUS 

NSSL-MPAS 3 none no HRRR or RRFS ICs MPAS NSSL 00 48 CONUS 

GFDL-FV3 1 none no GFS cold start FV3 GFDL 00 126 CONUS 

NASA-FV3 1 none no GEOS-DA FV3 NASA 00 120 CONUS 

NCAR-FV3 10 GEFS no GEFS cold start FV3 NCAR 00 192 CONUS 

NCAR-MPAS 5 GEFS no GEFS cold start MPAS NCAR 00 132 CONUS 

Table 1. Summary of the 8 unique subsets that comprise the 2023 CLUE. For the RRFS and RRFSphys CLUE Subsets, 
00, 06, 12, & 18 UTC initializations have 60 h forecast lengths & the entire 10-member ensemble is run; for all other 
RRFS & RRFSphys initialization times, only the control member is initialized with forecast lengths of 18-h. 

 

The design of the 2023 CLUE allowed for several unique experiments that 
examined issues immediately relevant to the design of a NCEP/EMC operational CAM 
ensemble.  The primary groups of experiments are listed as follows: 

 
RRFS vs. HRRR/HREF 

• Description: Deterministic and ensemble components of RRFS were compared 
to their operational counterparts HRRR and HREF, respectively, for Day 1 & 2 lead 
times. Additional comparisons were made during the first 12 h of the forecasts to 
evaluate the effectiveness of the data assimilation in each system. 

• Goal: Evaluate RRFS skill and utility relative to HREF and HRRR to assess RRFS 
progress toward potential operational implementation in 2025.  

• CLUE subsets: RRFS 

RRFS Configuration Strategies 

• Description: RRFS with 6- and 12-hour time lagging, as well as RRFS with mixed-
physics were compared to RRFS with single physics.  

• Goal: Identify a strategy within the UFS framework that performs as good as or 
better than HREFv3, so that it can serve as a replacement in NCEP’s production 
suite. 

• CLUE Subsets: RRFS and RRFSphys 

Medium-Range CAM Ensembles 

• Description: NCAR provided a 10-member, FV3-based, CAM ensemble with 
forecasts to 7 days, as well as a 5-member, MPAS-based CAM ensemble with 
forecasts to 5 days.  

• Goal: Evaluate and compare the utility of CAM ensembles for medium-range 
severe weather forecasting. 
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• CLUE Subsets: NCAR-FV3 and NCAR-MPAS 

Enhanced Resolution 

• Description: NSSL ran two versions of WRF-ARW with 3- and 1-km grid-spacing. 

• Goal: Examine grid-spacing sensitivity and assess whether enhanced resolution 
can provide improved severe weather guidance with particular attention given to 
depiction of storm structure and mode, as well as low-level rotation diagnostics. 

• CLUE Subsets: NSSL3 and NSSL1 

MPAS Configurations 

• Description: NSSL ran three 00Z versions of convection-allowing MPAS runs over 
CONUS with varied ICs (HRRR or RRFS) and microphysics schemes (Thompson 
or NSSL).  

• Goal: Assess sensitivities and performance differences in MPAS configurations 
with different initialization and microphysics. 

• CLUE Subsets: NSSL-MPAS 

3D-RTMA Background 

• Description: Two hourly versions of 3D-RTMA that used a different background 
first-guess were compared.  

• Goal: Assess the impact of the background first guess on the final analysis. 

• 3DRTMA Versions: HRRR and RRFS 

 

2.1.2 The High-Resolution Ensemble Forecast System Version 3 (HREFv3) 

 

HREFv3 is a 10-member CAM ensemble that was implemented in operations 11 
May 2021 and forecasts can be viewed at: http://www.spc.noaa.gov/exper/href/. HREFv3 
replaced HREFv2.1.  The design of HREFv3 originated from the SSEO, which 
demonstrated skill for six years in the HWT and SPC prior to initial operational 
implementation in 2017.  In HREFv3, the HRW NMMB simulations have been replaced 
with HRW FV3. The member configuration diversity in HREFv3 has proven to be a very 
effective configuration strategy, and it has consistently outperformed all other CAM 
ensembles examined in the HWT during the last several years.   

 

2.1.3 NSSL Cloud-Based Warn-on-Forecast System (cb-WoFS) 

  

Cloud-based Warn-on-Forecast (cb-WoFS) is the next WoFS iteration, upgraded 
to use current technologies in containerization and cloud computing. The entire WoFS 
application was rebuilt on top of multiple Platform-as-a-Service and Infrastucture-as-a-
Service technologies on the Azure platform and the WRF model itself rebuilt to run in 
containers optimized for HPC. With the new cb-WoFS interface, administrators can easily 

http://www.spc.noaa.gov/exper/href/
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configure the domain and dynamically create an HPC infrastructure for the run, and upon 
completion, tear it down, thereby reducing costs by only paying for used resources. 
Another benefit is that as Azure continues to add new, updated computer core types from 
chip manufacturers, these options are passed down to Azure customers, giving cb-WoFS 
operators the choice of running on the latest technologies. All parts of WoFS have been 
rebuilt for scalability: the containerized WRF can be executed on any node, the post-
processing is built on high performance queues and containerized, so any number of 
post-processing jobs can run concurrently.   

The cb-WoFS is a rapidly-updating 36-member, 3-km grid-spacing WRF-based 
ensemble data assimilation and forecast system. The cb-WoFS forecasts are initialized 
every 30 minutes and used to produce very short-range (0-6/0-3 h at top/bottom of the 
hour) probabilistic forecasts of individual thunderstorms and their associated hazardous 
weather phenomena such as supercell hail, high winds, flash flooding, and supercell 
thunderstorm rotation.  The 900-km x 900-km daily cb-WoFS domain targeted the primary 
region where severe weather was anticipated. For SFE 2023, WoFS has the capability to 
run over two different domains.  A second domain was only implemented when there were 
two separate regions where severe weather was expected (e.g., Midwest and East 
Coast), or when there was a very large single area for which two domains were needed 
to cover the entire risk area.  

The starting point for each day’s experiment was the High-Resolution Rapid 
Refresh Data Assimilation System (HRRRDAS) and the 1200 UTC HRRR forecast 
provided by NCO/GSL. A 1-h forecast from the 1400 UTC, 36-member, hourly-cycled 
HRRRDAS analysis provided the ICs for cb-WoFS.  Boundary conditions were perturbed 
HRRR forecasts, where perturbations from the 0600 UTC GEFS were added to the 1200 
UTC HRRR forecasts.  The GEFS perturbations were scaled such that the ensemble 
spread at the lateral boundaries was similar to that provided previously by the 
experimental HRRR ensemble. 

 

2.2 Daily Activities 

 

SFE 2023 activities were focused on forecasting severe convective weather and 
evaluating the previous day’s model forecasts.  A summary of evaluation activities and 
forecast products can be found below while a detailed schedule of daily activities is 
contained in the appendix (Table A2).  Note, when referencing the times in this document 
at which experiment activities occurred, we use Central Daylight Time (CDT), which is the 
time zone in which the HWT facility and SFE organizers are based.  However, it is worth 
noting that many of our virtual participants were located in different time zones as far 
away as the United Kingdom and Australia, so their local time was quite different. 
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2.2.1 Forecast and Model Evaluations 

 

SFE 2023 featured a period of formal evaluations from 9-11am CDT Tuesday 
Friday for the first four weeks and Wednesday-Friday for the fifth week for a total of 19 
days of evaluation. The evaluations involved comparisons of different ensemble 
diagnostics, CLUE ensemble subsets, HREFv3, and WoFS. Additionally, the evaluations 
of yesterday’s experimental forecasts products were conducted during this time, which 
involved comparing the experimental products to observed local storm reports (LSRs), 
NWS warnings, and Multi-Radar, Multi-Sensor (MRMS; Smith et al. 2016) radar 
reflectivity and maximum estimated size of hail (MESH). Participants were split into 
Groups 1, 2, and 3, and each conducted a separate set of model evaluations. These 
groups were hybrid meaning that they contained a mix of in-person and virtual 
participants. The evaluations were categorized as “CAM (E)nsembles”, “(D)eterministic 
CAMs”, “(A)nalyses”, “Funded (P)rojects”, “(C)alibrated Guidance”, or “(O)utlooks”. The 
letter in parentheses combined with a number was used to label the individual evaluations 
in each category (e.g., E1 refers to the first CAM Ensemble evaluation). Each evaluation 
group conducted a mix of evaluations from each category. Participants rotated through 
each evaluation group at least once. Participants worked on all the surveys individually, 
with short discussion periods after completion of each survey. SFE facilitators were 
available to answer any questions, troubleshoot issues, and discuss subjective 
impressions of the day. 

 

2.2.2 Experimental Forecast Products 

 

The experimental forecasts covered a limited-area domain typically encompassing 
the primary severe threat area with a domain based on existing SPC outlooks and/or 
where interesting convective forecast challenges were expected. An exception was the 
Day 3 & 4 outlooks, which covered the entire CONUS. There were two periods of 
experimental forecasting activities during SFE 2023. The first occurred from 11:00am – 
12:30pm CDT and focused on generating probabilistic outlooks for individual hazards for 
Days 1-3, as well as more precise information on the intensity of specific hazards. The 
Day 4 outlooks only covered total severe (i.e., no individual hazards or conditional 
intensity forecasts). Participants were split into three groups: (1) In-Person R2O, (2) In-
Person Innovation, and (3) Virtual. As the naming convention suggests, in-person 
participants were in R2O and Innovation groups, while all virtual participants were in the 
Virtual group. The In-Person R2O group issued products for Day 1, the Virtual group 
issued products for Day 2, and the In-Person Innovation group issued products for Days 
3 & 4.  

In all groups, the morning forecasts were done collectively. The individual hazard 
forecasts mimicked the SPC operational Day 1 & 2 Convective Outlooks by producing 
individual probabilistic coverage forecasts of large hail, damaging wind, and tornadoes 
within 25 miles (40 km) of a point. The Day 1 outlooks covered the period 1800 UTC to 
1200 UTC the next day, while the Days 2, 3, & 4 outlooks covered 1200 – 1200 UTC 
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periods. Additionally, for experimental outlooks covering Days 1, 2, & 3, conditional 
intensity forecasts of tornado, wind, and hail were issued, in which areas are delineated 
where reports that are expected to follow intensity distributions defined by conditional 
intensity groups. These conditional intensity forecasts are similar to those issued during 
SFEs 2019-2022. The four possible conditional intensity groups (CIG) included: no CIG, 
CIG 0, CIG 1, and CIG 2. In plain language, CIG 0 refers to a typical severe weather day, 
where significant severe weather is unlikely, CIG 1 areas indicate where significant 
severe weather is possible, and CIG 2 areas indicate where high impact significant severe 
weather is expected. All groups had access to all available operational and experimental 
guidance products for issuing their outlooks.  

The second period of experimental forecasting activities occurred during the 2-
4pm CDT time period. From 2-2:15pm CDT, a weather briefing led by Dave Imy was 
conducted for all participants during which an update on current weather was given. In 
the In-Person R2O group, the 2:15-3:15pm CDT time period was devoted to an activity in 
which each participant created their own Mesoscale Discussion (MD) Product using 
WoFS and other available CAM guidance within the SFE Drawing Tool. Then, during the 
3:15-4pm CDT time period, each In-Person R2O participant used WoFS and other 
available guidance to update the Day 1 individual hazard coverage and conditional 
intensity forecasts done earlier as a group for the period 2100 – 1200 UTC.  

During the 2:15-4pm CDT time period in the In-Person Innovation Group and 
Virtual Group, another activity was devoted to issuing short-term, meso-beta to meso-
gamma scale predictions of severe weather. In this activity, each participant issued a 
forecast consisting of two parts: (1) a geographic threat area (i.e., graphic) and (2) a text 
discussion. The geographic threat area was created using the WoFS web viewer drawing 
tool and took one of three formats: (1) A single contour highlighting a region of expected 
severe weather along the track of an individual storm, (2) two contours, one 
encompassing a broader region where severe weather is expected and the second, 
smaller contour outlining what is perceived as the corridor of greatest risk, or (3) A single 
contour that highlights a broader region where severe weather is expected. Each 
participant issued their first set of predictions during the 2:15-3pm CDT time period, and 
then from 3-3:15pm CDT each participant had an opportunity to present and discuss their 
product. Then, from 3:15-3:45pm CDT the outlooks and text discussions were updated 
with a focus on how more recent observations and more up-to-date WoFS guidance was 
influencing the perceived threat and confidence in the forecast. For example, did WoFS 
indicate increasing or decreasing likelihood of an event relative to previous guidance, or 
does the more recent guidance simple reinforce earlier guidance? Finally, from 3:45-4pm 
each participant participated in a short survey with some targeted questions on WoFS 
products used, changes in forecasts between 1st and 2nd hours, and overall confidence. 
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3. Preliminary Findings and Results 

3.1 Model Evaluation – (C)alibrated Guidance 

3.1.1 (C1) Day 2 12Z HREF Calibrated Tornado Guidance 

 

A number of probabilistic calibrated tornado guidance products generated from the 
12Z HREF and valid for the Day 2 period (i.e., f24-f48) were evaluated during the HWT 
SFE. It is worth noting that May 2023 was an abnormally quiet period for severe weather, 
including tornadoes. Thus, one must be careful to not overgeneralize these results; 
though there were a few active tornado days that were evaluated, including 11 May 2023 
(Fig. 3). There were five independent tornado guidance products that were evaluated and 
all of them utilize the 12Z HREF as their primary numerical weather prediction input. A 
new product, the ensemble mean of these five probabilistic products, was also evaluated 
in this suite of guidance. Owing to time constraints during the HWT SFE, only active 
tornado days were evaluated and included in the subjective results. 

In terms of the subjective ratings for the Day 2 tornado guidance products, they all 
had reasonably similar rating distributions, especially at the upper end (Fig. 4). The 
HREF/GEFS Calibrated and STP Cal MCS-TF tended to have more lower-rated tornado 
forecasts than the other guidance products bringing down their mean and median ratings. 
The HREF/GEFS Calibrated tended to have the highest peak probability magnitudes on 
many days and was often thought to be an overforecast while the STP Cal MCS-TF 
tended to have the lowest peak probability magnitudes on many days with less spatial 
coverage of probabilities overall. The Nadocast and Cal Ensemble Mean products tended 
to have slightly higher mean ratings during the SFE, but the differences were rather small. 

 

 

Figure 3. Example of the website comparison page for the Day 2 12 HREF calibrated tornado guidance during the 2023 
HWT SFE.  The different Day 2 guidance products valid for the convective day of 11 May 2023 are shown with tornado 
reports overlaid (gray symbols indicate “brief”, “weak”, and/or “landspout” tornadoes).  
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Figure 4. Distributions of subjective ratings (1-10; with 10 being best) by SFE participants of the Day 2 12Z HREF 
calibrated tornado guidance products: HREF/GEFS Calibrated, STP Cal Circle, Nadocast, ML Random Forest, STP 
Cal MCS-TF, and Cal Ensemble Mean. 

 

3.1.2 (C2) Day 1 12Z HREF Calibrated Tornado Guidance 

 

Similar to the evaluation of the Day 2 12Z HREF calibrated tornado guidance, the 
same tornado guidance products were also evaluated for the Day 1 period (i.e., f0-f24; 
Fig. 5). Not surprisingly, the subjective ratings were higher across the board for the 
shorter-range Day 1 products (c.f., Figs. 4 & 6). The STP Cal MCS-TF product was the 
lowest rated of the guidance suite on Day 1 with a median rating of 5 out of 10 (Fig. 6). 
Again, the lower probability magnitudes and more limited spatial coverage tended to hurt 
this product in the subjective ratings. Two products, Nadocast and the Cal Ensemble 
Mean, stood out as the best performing tornado guidance with the highest median ratings 
of 7 out of 10 during the 2023 HWT SFE. 
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Figure 5. Example of the website comparison page for the Day 1 12 HREF calibrated tornado guidance during the 2023 

HWT SFE.  The different Day 1 guidance products valid for the convective day of 11 May 2023 are shown with tornado 
reports overlaid (gray symbols indicate “brief”, “weak”, and/or “landspout” tornadoes).  

 

 

Figure 6. Distributions of subjective ratings (1-10; with 10 being best) by SFE participants of the Day 1 12Z HREF 

calibrated tornado guidance products: HREF/GEFS Calibrated, STP Cal Circle, Nadocast, ML Random Forest, STP 
Cal MCS-TF, and Cal Ensemble Mean. 
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3.1.3 (C3) 1630Z 4-h SPC Tornado Timing Guidance (hourly 20-12Z) 

 

In an effort to add more specific temporal information to the Day 1 Outlook, SPC 
has developed Severe Timing Guidance products, which are hourly 4-h severe weather 
probabilities through the convective day. The Severe Timing Guidance products are 
consistent with and constrained by the human-issued SPC Convective Outlooks and uses 
HREF-based guidance to disaggregate the probabilities throughout the convective day. 
The current real-time SPC Timing Guidance probabilities leverage the operational 
HREF/SREF calibrated hazard probabilities, but with the planned retirement of the SREF 
in the coming years, other HREF-based guidance products were tested in the algorithm 
during the 2023 HWT SFE to determine the effect on the probabilistic output. 

For the Tornado Timing Guidance, using Nadocast as the input to the algorithm 
produced the highest-rated timing guidance products (Fig. 7). The only version of the 
Tornado Timing Guidance that was a degradation over the baseline product 
(HREF/SREF) was the one using the HREF Calibrated Thunder (HREFCT). The 
HREFCT-based timing guidance tended to extend the probabilities too late into the 
overnight period when the tornado threat had diminished. 

 

 

Figure 7. Distributions of subjective ratings (1-10; with 10 being best) by SFE participants of the 1630Z 4-h Tornado 
Timing Guidance Products based on the HREF/SREF, HREF/GEFS, HREFCT, and Nadocast. 
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3.1.4 (C4) Day 2 12Z HREF Calibrated Hail Guidance 

 

Three different methods were examined that produced calibrated hail guidance for 
the Day 2 time period using 1200 UTC initialization HREF fields. For each method, 
participants were asked to evaluate the hail probabilities based on (1) magnitude, (2) 
areal coverage, and (3) placement, relative to the practically perfect hindcast. Then, 
participants assigned an overall rating on a scale of 1 (very poor) to 10 (very good). An 
example forecast is shown in Figure 8. 

For HREF/GEFS Cal, magnitudes were most often rated about right or too low, 
coverages were most often rated too small or about right, and placement was usually 
somewhat displaced or nearly colocated (Fig. 9a). For Nadocast, magnitude, coverage, 
and placement were most frequently rated about right, about right, and nearly collocated, 
respectively (Fig. 9b). Finally, ML Random Forest had the highest frequency of about right 
responses for magnitude and coverage (Fig. 9c), but Nadocast placement was had the 
most nearly collocated responses. For the overall ratings, Nadocast had the highest 
average subjective rating, followed by ML Random Forest and HREF/GEFS Cal (Fig. 10). 

 

 

Figure 8. Day 2 Severe hail probabilities valid 1200 – 1200 UTC 19-20 May 2023 from (a) HREF/GEFS Cal, (b) 

Nadocast, (c) ML Random Forest, and (d) practically perfect hindcasts. In each panel, hail (green circles) and significant 
hail (black circles) LSRs, as well as areas of MESH ≥ 1.0-in. (pink shading) are overlaid.  
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Figure 9. Response frequencies relating to magnitude, coverage, and placement of 1200 UTC HREF-based Day 2 hail 
probabilities derived from (a) HREF/GEFS Cal, (b) Nadocast, and (c) ML Random Forest. 
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Figure 10. Box plots showing the distributions of subjective rankings by SFE 2023 participants for the overall forecast 

quality of 1200 UTC HREF-based Day 2 hail probabilities from HREF/GEFS Cal, Nadocast, and ML Random Forest. 

 

3.1.5 (C5) Day 1 12Z HREF Calibrated Hail Guidance 

 

Similar to C4, three different methods were examined that produced calibrated 
hail guidance using 1200 UTC initialization HREF fields, except this survey examined the 
Day 1 time period. For each method, participants were asked to evaluate the hail 
probabilities based on (1) magnitude, (2) areal coverage, and (3) placement, relative to 
the practically perfect hindcast. Then, participants assigned an overall rating on a scale 
of 1 (very poor) to 10 (very good). 

For HREF/GEFS Cal, magnitudes were most often rated too low or about right, 
coverages were most often rated about right, and placement was usually somewhat 
displaced or nearly co-located (Fig. 11a). For Nadocast and ML Random Forest, 
magnitude, coverage, and placement were most frequently rated about right, about right, 
and nearly collocated, respectively (Fig. 11b & c). However, Nadocast had more frequent 
responses relative to ML Random Forest for about right, about right, and nearly 
collocated, for magnitude, coverage, and placement, respectively. For the overall ratings, 
Nadocast had the highest average subjective rating, followed by ML Random Forest and 
HREF/GEFS Cal (Fig. 12). The relative results for Day 1 closely followed those of Day 2. 



28 

 

 

Figure 11. Response frequencies relating to magnitude, coverage, and placement of 1200 UTC HREF-based Day 1 
hail probabilities derived from (a) HREF/GEFS Cal, (b) Nadocast, and (c) ML Random Forest. 
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Figure 12. Box plots showing the distributions of subjective rankings by SFE 2023 participants for the overall forecast 
quality of 1200 UTC HREF-based Day 1 hail probabilities from HREF/GEFS Cal, Nadocast, and ML Random Forest. 

 

3.1.6 (C6) Day 1 12Z HREF Calibrated Hail Guidance: MESH (Maximum Estimated Size 
of Hail) 

 

 In this survey, a version of HREF/GEFS Cal (referred to as HREF/GEFS MESH) 
was evaluated that was calibrated based on MESH instead of LSRs. Similarly, 
comparisons were made to practically perfect hindcasts computed from both MESH and 
LSRs, as well as only LSRs. An example forecast is shown in Figure 13. Magnitude, 
coverage, and placement were most frequently rated about right, about right, and nearly 
collocated, respectively (Fig. 14a). In addition, the mean subjective rating for 
HREF/GEFS MESH was 6.76 (Fig. 14b), which is an improvement relative to the 6.08 
mean subjective rating of HREF/GEFS Cal. It appeared that most participants compared 
HREF/GEFS MESH to practically perfect hindcasts computed from only hail LSRs (e.g., 
Fig. 13b vs. Fig. 13c) when deciding on their ratings. Many of the survey comments noted 
that practically perfect hindcasts computed from both MESH and LSRs were way too 
high (e.g., Fig. 13d). 
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Figure 13. HREF/GEFS Cal severe hail probabilities valid 1200 – 1200 UTC 19-20 May 2023. (b) Same as (a), except 
for HREF/GEFS MESH. (c) Practically perfect hindcasts computed using hail LSRs, and (d) same as (c) except 
practically perfect hindcast computed using both LSRs and MESH. In each panel, hail (green circles) and significant 
hail (black circles) LSRs, as well as areas of MESH ≥ 1.0-in. (pink shading) are overlaid.  

 

 

Figure 14. Response frequencies relating to magnitude, coverage, and placement of 1200 UTC HREF-based Day 1 
hail probabilities derived from HREF/GEFS MESH. (b) Box plots showing the distributions of subjective rankings by 
SFE 2023 participants for the overall for the overall forecast quality of 1200 UTC HREF-based Day 1 hail probabilities 
from HREF/GEFS MESH.  
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3.1.7 (C7) 1630Z 4-h SPC Hail Timing Guidance (hourly 20-12Z) 

 

For the Hail Timing Guidance, the HREF/GEFS product was rated similarly to the 
Nadocast product as the best performing versions of Hail Timing Guidance with median 
ratings of 7 out of 10.  Both versions appear to be slight improvements over the current 
HREF/SREF baseline (Fig. 15).  Similar to the Tornado Timing Guidance results, only 
the HREFCT version of the Hail Timing Guidance was rated subjectively lower than the 
HREF/SREF version, owing to a slower-than-observed decrease in probabilities 
regarding the risk of large hail. 

 

 

Figure 15. Distributions of subjective ratings (1-10; with 10 being best) by SFE participants of the 1630Z 4-h Hail Timing 

Guidance Products based on the HREF/SREF, HREF/GEFS, HREFCT, and Nadocast. 

 

3.1.8 (C8) Day 2 12Z HREF Calibrated Wind Guidance 

 

 SFE participants evaluated four severe wind (> 50 kts) calibrated guidance 
products for a 24-hr period starting at 1200 UTC for the Day 2 forecast period. All 
products were derived from the 1200 UTC HREF. The HREF/GEFS calibration method 
is based on the historical frequency of severe wind reports as related to forecast storm 
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and environmental parameters. The ML Random Forecast (MLRF) method, uses a 
random forest machine-learning algorithm to generate severe wind probabilities from 22 
derived storm attributes and environmental parameters. Nadocast is another machine 
learning method that incorporates more than 10,000 predictors derived from storm-scale 
and environmental parameters. Finally, the Nadocast ‘adjusted’ (NadoAdj) model is an 
alternate version of Nadocast that attempts to correct for biases in wind damage reports 
based on historical ratios of wind damage reports to nearby measured severe winds. 

Participants subjectively evaluated the guidance products compared to observed 
local storm reports and NWS-issued warnings. On average, over the 19-day SFE 
evaluation period, MLRF and Nadocast were the top performers at Day 2 lead times with 
a mean score of 6.40 and 5.98, respectively (Fig. 16). This result demonstrates that the 
MLRF method, which uses a limited but judiciously selected list of ML predictors, 
performed as well as or even better than the much more complex Nadocast. The 
relatively low ratings attributed to NadoAdj suggests that the attempt to adjust for biases 
of measured wind reports was not effective within the experiment domain. Although 
NadoAdj was often successful in tempering over-forecast severe wind probabilities in the 
eastern US (where measured wind LSRs are potentially overestimated), it resulted in a 
potential overprediction of severe wind occurrence in the Great Plains. 

 

 

Figure 16. Distribution of subjective ratings for the C8 Day 2 Calibrated Wind Guidance evaluation.  The white dots 
represent the mean ratings for each ensemble, and the white bars indicate the 95% confidence intervals for each mean. 
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Figure 17. Response frequencies relating to magnitude, coverage, and placement of 1200 UTC HREF-based Day 2 
wind probabilities derived from (a) HREF/GEFS Cal, (b) Nadocast, (c) ML Random Forest, and (d) NadoAdj. 
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To help identify dominant factors used by participants in assigning forecast skill 
scores, they were asked to evaluate each calibration method in specific consideration of 
placement, areal coverage, and magnitude of maximum forecast probability contours as 
compared to the practically perfect hindcast (PPH). In consideration of forecast 
magnitude, MLRF and Nadocast were both similarly evaluated as being “about right” 
(~50 frequency responses, Fig. 17). A majority of responses evaluated HREF/GEFS and 
Nadocast Adj. as being “too high” or “much to high”. Similarly for coverage, MLRF and 
Nadocast were similarly evaluated as being “about right” (~40 frequency responses) 
while the majority of responses evaluated HREF/GEFS and Nadocast Adj. as being “too 
large” or “much too large”, suggesting that coverage also had bearing on evaluation of 
overall skill. These results are consistent with the overall evaluated order of preferred 
methods (Fig. 16) for which MLRF and Nadocast were evaluated as the top performing 
methods, suggesting that both magnitude and coverage were dominant factors 
considered by SFE participants when rating overall method performance. Placement, 
however, for Nadocast, NadoAdj, and MLRF were evaluated with similar responses as 
being either “nearly collocated” or “somewhat displaced” (Fig. 17), but these methods 
had dissimilar overall skill scores (Fig. 16) suggesting that placement was not considered 
as much an evaluation factor compared to magnitude and coverage. 

 

3.1.9 (C9) Day 1 12Z HREF Calibrated Wind Guidance 

 

 The same set of Day 2 calibrated wind guidance products was also evaluated for 
Day 1. The Day 1 overall ratings were quite similar to Day 2 with MLRF receiving the 
highest average subjective ratings, followed by Nadocast, NadoAdj, and HREF/GEFS 
Cal (Fig. 18).  

 

 

Figure 18. Distribution of subjective ratings for the C9 Day 1 Calibrated Wind Guidance evaluation.  The white dots 
represent the mean ratings for each ensemble, and the white bars indicate the 95% confidence intervals for each mean. 
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Figure 19. Response frequencies relating to magnitude, coverage, and placement of 1200 UTC HREF-based Day 1 
wind probabilities derived from (a) HREF/GEFS Cal, (b) Nadocast, (c) ML Random Forest, and (d) NadoAdj. 
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Participant evaluation of forecast magnitude, coverage, and placement yielded 
similar results for Day 1 forecasts as for Day 2 forecasts as discussed above. Participants 
rated Nadocast and MLRF Day 1 forecast magnitude high with most frequent responses 
(greater than 50, Fig. 19) given as “About right”, Nadocast and MLRF also had the highest 
overall skill score (mean value of greater than 6.5, Fig. 18), which suggests that forecast 
magnitude was an important factor in skill evaluation. HREF/GEFS Cal and NadoAdj 
usually had magnitudes that were rated less favorably, being either “Too high” or “Much 
too high”, which is consistent with their overall lower skill scores (less than 5.9). For 
coverage, Nadocast forecasts were considered better than MLRF with most coverage 
forecasts evaluated as “About right”, while MLRF coverage had the same frequency of 
responses being either “About right” or “Too large”. These results are slightly different 
than the order of overall skill that favors MLRF, which are 6.8 and 6.5 for MLRF and 
Nadocast respectively. These results for Day 1 suggest that coverage is possibly a lesser 
factor than magnitude. Finally, for placement, Nadocast, MLRF, and NadoAdj had nearly 
the same frequency of responses for “Nearly collocated” and “Somewhat collocated”, 
even though their overall skills differed, suggesting that placement was considered less 
influential in overall evaluation as were other factors. 

 

3.1.10 (C10) 1630Z 4-h SPC Wind Timing Guidance (hourly 20-12Z) 

 

As with the Tornado and Hail Timing Guidance (C3 & C7), the Wind Timing 
Guidance was highest rated for the version using Nadocast as the input, followed closely 
by the HREF/GEFS version. Again, both of these products were rated higher (both mean 
and median) than the HREF/SREF baseline version, but slightly lower mean ratings for 
wind as compared to hail (c.f. Figs. 15 & 20). The HREFCT version of the Wind Timing 
Guidance was once again the lowest-rated product among the suite, largely owing to a 
slower ramp up and ramp down in probabilities than the other versions. Generally 
speaking, this more gradual increase in severe wind probabilities preceding the peak of 
severe weather followed by a more gradual decrease in probabilities overnight did not 
match the timing of the severe wind threat as well as the other versions of the guidance. 
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Figure 20. Distributions of subjective ratings (1-10; with 10 being best) by SFE participants of the 1630Z 4-h Wind 
Timing Guidance Products based on the HREF/SREF, HREF/GEFS, HREFCT, and Nadocast. 

 

3.1.11 (C11) Medium Range 00Z GEFS Total Severe 

 

Three algorithms for producing extended-range forecasts of total severe (tornado, 
wind, or hail) were assigned subjective ratings for Days 3-7. GEFS Reforecast ML is a 
random forest algorithm that uses environmental predictors from GEFS ensemble 
medians and is trained using 5-member GEFS reforecasts from Colorado State 
University. GEFS Reforecast ML has been tested in previous SFEs with very promising 
results; more info can be found in Hill et al. (2013). GEFS Operational ML from NSSL is 
similar to GEFS Reforecast ML, but it is trained using just over 2 years of the most recent 
GEFS Operational forecasts, which contain 31 members. Finally, GEFS Reforecast Cal 
from NSSL is a simple calibration method similar to what SPC has applied for many years 
to SREF, which uses environmental predictors from GEFS.  

At each lead time, GEFS Operational ML was clearly the best performing 
algorithm, with statistically significant differences at all times. GEFS Reforecast ML was 
rated second, and GEFS Reforecast Cal was rated third (Fig. 21). An example case 
illustrating differences in GEFS Reforecast ML and GEFS Operational ML is shown in 
Figure 22. The GEFS Operational ML tends to generate higher probabilities at longer 
lead times that often correspond quite well with observed severe weather. 
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Figure 21. Distributions of subjective ratings for the C11 Medium-Range GEFS Total Severe evaluation for (a) Day 3, 
(b) Day 4, (c) Day 5, (d) Day 6, and (e) Day 7. The white dots represent the mean ratings for each ensemble, and the 
white bars indicate the 95% confidence intervals for each mean. The mean ratings are also shown at the bottom of 
each violin plot.  



39 

 

 

Figure 22. Severe weather probabilities at Day 7 lead time from (a) GEFS operational ML, & (b) GEFS reforecast ML.  
(c)-(d), (e)-(f), (g)-(h), and (i)-(j), same as (a)-(b), except for lead times of 6, 5, 4, & 3 days, respectively.  Locations of 
observed storm reports are overlaid.  

 

3.1.12 (C12) 00Z HRRR NCAR NN Tor/Hail/Wind Guidance 

 

Probabilistic convective hazard guidance for tornado, hail, and severe wind 
forecasting is generated using a neural network (NN) algorithm. The initial version (v1) 
of this algorithm was trained with 42 diagnostics based on forecasted fields of the 
operational HRRR. The updated version (v2) includes 6 additional predictors that are 
related to convective mode. During the SFE, participants were asked to evaluate and 
compare the tornado, hail, and severe wind probabilistic guidance produced by both 
versions of the NN algorithm. 

Figure 23 presents the subjective evaluation of v2 in the prediction of tornado, 
hail, and winds as well as the perceived improvement of v2 over v1 for all three 
convective hazards. Improvement is indicated by a mean value greater than zero. The 
hail guidance received a subjective improvement score of 0.01, thus there was no 
perceived change in performance over v1. Conversely, tornado and wind guidance 
showed a slight increase in skill for v2 with improvement scores of 0.15 and 0.11 
respectively. These results are consistent with participant comments which generally 
considered v2 and v1 forecasts as similar. If some differences were noted, v2 was 
favored as the slightly better performer. This was mentioned as true in particular for 
tornado forecasts. 
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Figure 23. Distribution of ratings assigned to the NCAR NN algorithm v2 forecast guidance for tornadoes, hail, and 
severe wind (left plot).  Perceived improvement of the NN algorithm v2 as compared to v1 (right plot; values -2 to 2 
indicate respectively:  much worse, worse, the same, better, much better).  

 

3.2 Model Evaluation – (D)eterministic CAMs 

3.2.1 (D1) CLUE: 00Z Day 1 Deterministic Flagships 

 

 This evaluation focused on comparing deterministic convection-allowing models 
which have been iterated on by their respective agencies and are relatively advanced in 
their development. Models included in this year’s experiment consist of the GFDL FV3, 
NSSL MPAS RT, RRFS, and NASA GEOS FV3, each representing unique combinations 
of dynamical cores, data assimilation strategies, and physics parameterizations. The 
operational HRRRv4 was also included as a point of comparison for the other models. 
Only the 0000 UTC model initializations were assessed in this evaluation, and 
participants were asked to only look at forecast hours 12 - 36 when completing their 
surveys. This limited the evaluation to the Day 1 (1200 – 1200 UTC) time period. All 
models were evaluated blindly such that participants were not able to see which model 
produced which forecast. Additionally, the order of each model was randomized daily so 
that participants could not anticipate a model being in the same panel day-to-day. Models 
were unblinded following discussion of the results and after all surveys were submitted. 

Participants compared the reflectivity and UH fields from each configuration, along 
with one environmental variable randomly selected from 2-m temperature, 2-m dewpoint, 
or surface-based convective available potential energy (SBCAPE). All participants then 
assessed and compared the 6-h quantitative precipitation forecast (QPF) produced by 
each model. Each model and field were independently rated on a scale of 1 (Very Poor) 
to 10 (Very Good), and participants had the option to provide additional insights via an 
open response box following each survey question. 
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Figure 24. Distribution of subjective scores received by each deterministic flagship model at Day 1 lead times during 
the 5-week experiment. The white dots represent the mean scores for each ensemble, and the white bars indicate the 
95% confidence intervals for each mean.  

 

The HRRRv4 received the highest ratings on average when evaluating the 
structure, evolution, location, and timing of simulated storm reflectivity and UH at Day 1 
lead times (Fig. 24), with a mean rating of 6.448 followed by the NSSL MPAS RT at 
6.141. The RRFS received a mean rating of 5.679, the GFDL FV3 was given a 5.230, 
and the NASA GEOS FV3 saw the lowest mean rating of 4.148. The HRRRv4 mean 
rating was found to be significantly higher (at the 95% confidence level) than that of the 
RRFS, GFDL FV3, and NASA GEOS FV3, but was not significantly different from the 
NSSL MPAS RT. Conversely, the mean rating of the NASA GEOS FV3 was significantly 
lower than all other model configurations at the 95% confidence level. The HRRRv4 was 
the only model to receive a score of 10 at some point during the experiment, while the 
other models had a maximum rating of 9. The HRRRv4, NSSL MPAS RT and GFDL FV3 
had minimum scores of 2, while the RRFS and NASA GEOS FV3 each received ratings 
of 1. When asked what characteristics of the simulated reflectivity and UH forecasts were 
most important to the participants when ranking the models, participants highlighted the 
timing and location of convective initiation, storm mode and evolution, and realistic storm 
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structure as their main points of focus. Simulated storm coverage and intensity were also 
discussed as influential factors. 

Objective neighborhood statistics computed over the SFE 2023 domains mirrored 
the average subjective ratings very closely, as illustrated by the performance diagram in 
Figure 25. In this plot, probability of detection (POD) is plotted against the success ratio 
(SR), and the Critical Success Index (CSI) increases towards the upper right part of the 
plot. All five flagship models have similar SRs, but PODs are much higher in the HRRR 
and MPAS runs, which are followed by RRFS and then GFDL FV3 and NASA GEOS 
FV3. This results in CSIs that follow the same relative ranking. 

 

 

Figure 25. Performance diagram for hourly forecasts of simulated composite reflectivity  40 dBZ within 40-km 
neighborhoods computed over SFE 2023 domains during the Day 1 forecast period (i.e., f12-36). 
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Figure 26. Response distributions for (a) 2-m temperature, (b) 2-m dewpoint, (c) SBCAPE, and (d) 6-h QPF at Day 1 
lead times.  The white dots represent the mean scores for each ensemble, and the white bars indicate the 95% 
confidence intervals for each mean. 

 

Participants rated the models much closer on average when assessing the three 
environmental fields and QPF (Fig. 26). The HRRRv4 again received the highest mean 
score for 2-m temperature, SBCAPE, and 6-h QPF, but the RRFS saw a higher mean 
rating for 2-m dewpoint. In general, the HRRRv4, RRFS, and NSSL MPAS RT received 
very similar ratings in all four fields, and any differences were not significant at the 95% 
confidence level. Conversely, the GFDL FV3 and NASA GEOS FV3 models consistently 
received the lowest mean ratings in each comparison, and these scores were found to 
be significant when compared to the highest rated models. The HRRRv4 was the only 
model to receive a rating of 10 at some point during the 5-week experiment in the 2-m 
temperature, 2-m dewpoint, and SBCAPE fields. Participants cited the magnitude and 
location of cold pools and mesoscale boundaries as the most influential factors 
contributing to their ratings for each environmental field, but systematic biases in the 
models were also noted as points of concern. For example, respondents frequently 
observed a strong dry bias in the GFDL FV3’s 2-m dewpoint which adversely affected its 



44 

 

rating for that field. Participants primarily considered the coverage and magnitude of 
estimated rainfall when assessing each model’s 6-h QPF, and many respondents 
commented that they did not place much emphasis on location error. Some concerns 
were raised about the difficulty of providing a single rating for multiple 6-h time frames, 
and participants suggested that 24-h QPF may be easier to evaluate in future SFEs. 

 

3.2.2 (D2) CLUE: 00Z Day 2 Deterministic Flagships 

 

This evaluation was similar to the previous, except participants were asked to 
evaluate the models at Day 2 lead times (forecast hours 37-60). As before, only the 0000 
UTC model initializations were assessed in this evaluation, and all models were blinded 
until after the surveys were submitted. Participants were again asked to evaluate the 
reflectivity and UH forecasts from each model, the same randomly selected 
environmental field from the Day 1 evaluation, and the 6-h QPF on a scale of 1 (Very 
Poor) to 10 (Very Good). Because the HRRRv4 is only available through forecast hour 
48, it was necessary to replace it with another operational model for the Day 2 evaluation. 
As such, the NAM CONUS Nest was chosen to serve as an operational point of 
comparison for the other models. Participants were not informed of this change from the 
Day 1 evaluation until after all surveys had been submitted. 

 

 

Figure 27. Distribution of subjective scores received by each deterministic flagship model at Day 2 lead times during 
the 5-week experiment. The white dots represent the mean scores for each ensemble, and the white bars indicate the 
95% confidence intervals for each mean.  
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In the absence of the HRRRv4, the NSSL MPAS RT received the highest mean 
rating when assessing the structure, evolution, location, and timing of simulated storm 
reflectivity and UH (Fig. 27). The NSSL MPAS RT had a mean score of 5.341, followed 
by the RRFS (5.156), NAM CONUS Nest (4.946), GFDL FV3 (4.810), and NASA GEOS 
FV3 (3.953). The NASA GEOS FV3 was again found to have a significantly lower (at the 
95% confidence level) mean rating than all other model configurations, but the NSSL 
MPAS RT, RRFS, NAM CONUS Nest, and GFDL FV3 received statistically similar 
ratings on average. The NAM CONUS Nest and GFDL FV3 were the only models to 
receive a score of 10 during the experiment, while the RRFS had a maximum rating of 9. 
The NSSL MPAS RT and NASA GEOS FV3 both had the lowest maximum rating of 8 
during the Day 2 evaluations. Conversely, the NSSL MPAS RT was the only model to 
receive a minimum rating of 2, while all other configurations saw a rating of 1 at some 
point during the experiment. 

 

 

Figure 28. Response distributions for (a) 2-m temperature, (b) 2-m dewpoint, (c) SBCAPE, and (d) 6-h QPF at Day 2 
lead times.  The white dots represent the mean scores for each ensemble, and the white bars indicate the 95% 
confidence intervals for each mean. 
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Participants gave the RRFS the highest mean rating for 2-m temperature, 2-m 
dewpoint, and 6-h QPF at Day 2 lead times, while the NSSL MPAS RT was rated the 
best for SBCAPE (Fig. 28). In general, all five models received very similar ratings in 
each of the environment evaluations, though there were a few notable exceptions. The 
GFDL FV3 was found to have a significantly lower mean score than the best-rated 
models in the 2-m dewpoint and SBCAPE evaluations. Similarly, the GFDL FV3 and 
NASA GEOS FV3 were found to have statistically lower mean ratings than the other three 
configurations when assessing the 6-h QPF. These results are consistent with those 
shown in the Day 1 evaluations. 

 

3.2.3 (D3) CLUE: RRFS vs. HRRR 

 

One of the critical evaluations during the 2023 HWT SFE was comparing the 
deterministic RRFS control member to the operational HRRR. This was done for both 
the 00Z and 12Z runs to assess the readiness of the RRFS to replace the HRRR for 
operational convective forecasting applications on Day 1. Participants were asked to 
examine storm-attribute fields (e.g., Fig. 29), including composite reflectivity and UH, 
updraft speed, 10-m wind speed, and 6-h QPF, and provide a single rating for the 
convective day (i.e., f12-f36 for the 00Z runs, and f01-f24 for the 12Z runs). For this 
evaluation, a five-point Likert scale was used to rate the RRFS as much worse, slightly 
worse, about the same, slightly better, or much better than the HRRR for each cycle and 
each field. For example, the 00Z RRFS forecast was generally rated slightly worse than 
the 00Z HRRR forecast for the derecho-producing MCS in Kansas on 9 May 2023 while 
the 12Z RRFS forecast was rated slightly better than the 12Z HRRR forecast (Fig. 29). 

 

 

Figure 29. Example of the 2023 HWT SFE model comparison page for the RRFS vs. HRRR valid at 20Z on 9 May 
2023.  The composite reflectivity forecasts are shown for the 00Z HRRR (upper-left panel), the 00Z RRFS control 
(upper-middle panel), the 12Z HRRR (lower-left panel), and the 12Z RRFS control (lower-middle panel). The observed 
MRMS composite reflectivity is shown in both the upper-right and lower-right panels.  
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For the 00Z storm-attribute fields, the HRRR was rated slightly better for simulated 
reflectivity/UH, updraft speed, and QPF than the RRFS by the SFE participants (Fig. 30). 
Meanwhile, the RRFS was very slightly favored for severe convective 10-m winds to 
occasionally have a better signal for strong winds in the vicinity of local storm reports of 
damaging winds. The most common comments from SFE participants included that the 
RRFS developed storms that were too intense and too numerous/widespread compared 
to observations, which distracted from primary threat regions and/or disrupted the 
downstream environment for convection. 

 

 

Figure 30. Distributions of subjective ratings (-2 to +2) by SFE participants of the 00Z RRFS compared to the HRRR 

for composite reflectivity and UH (red), updraft speed (purple), 10-m wind speed (blue), and 6-h QPF (green).  The 
ratings represent the RRFS compared to the HRRR -2: Much Worse; -1: Slightly Worse; 0 – About the Same; +1 Slightly 
Better; +2: Much Better.  

 

Regarding the ratings of the 00Z environment fields, SFE participants gave a slight 
edge to the HRRR for SBCAPE, 2-m temperature, and 2-m dewpoint over the RRFS 
control (Fig. 31). The SBCAPE forecasts were the most common environmental field to 
be favored for the HRRR with a median rating of the RRFS being slightly worse. Overall, 
the RRFS tends to have a low bias (frequency and magnitude) in forecasts of CAPE. 
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Figure 31. Same as Fig. 30, except for environmental fields of SBCAPE (yellow), 2-m temperature (pink), and 2-m 
dewpoint (light green). 

 

Surprisingly, evaluations of the 12Z runs revealed different results. The subjective 
ratings of storm-attribute fields (Fig. 32) indicate that the performance of the 12Z RRFS 
control member was much closer to that of the 12Z HRRR compared to the respective 
00Z runs. This subjective difference in performance based on model initialization is 
supported by objective metrics as well. A performance diagram for convective storms 
(i.e., ≥40 dBZ composite reflectivity) reveals that the 12Z RRFS control and 12Z HRRR 
have very similar performance characteristics while the 00Z HRRR has a clear advantage 
in POD and CSI over the 00Z RRFS (Fig. 33). While it is difficult to identify the primary 
cause for this performance dependence on initialization time, it is speculated that the data 
assimilation issues noted in the next section (D4) have a stronger impact on the 00Z runs 
when the coverage of deep convection is greater at initialization as compared to the 12Z 
runs. 
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Figure 32. Same as Fig. 30, except for comparing the 12Z runs of the RRFS to the HRRR. 

 

 

Figure 33. Performance diagram for hourly composite reflectivity ≥40 dBZ covering the 24-h convective day (i.e., 12-
12Z) over the five-week period of the HWT SFE.  The 00Z and 12Z HRRR (blue circle) and RRFS (red star) performance 
characteristics are labeled on the diagram. The statistics are only calculated over the primary mesoscale domain used 
each day for evaluation activities.  
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3.2.4 (D4) CLUE: RRFS vs. HRRR DA 

 

 HRRRv4 and RRFS were examined during the first 12 hours of their forecasts for 
2100 and 0000 UTC initialization to assess forecast skill at times during which the data 
assimilation has a large impact. The times 2200, 0100, and 0600 UTC were considered. 
Participants first compared forecast UH and simulated composite reflectivity to observed 
reflectivity and were asked, “Please rate on a scale of 1 (very poor) to 10 (very good) 
how well each model depicts storms that were ongoing at [22z, 01z, or 06z]. Consider 
aspects like storm retention, strength, and location in your answer.” An example graphic 
from the model comparison webpage is shown in Figure 34. 

For all lead times at both initializations examined, the mean subjective ratings for 
HRRRv4 were higher than RRFS (Fig. 35). For the 2100 UTC initialization, differences 
were statistically significant at 2200 and 0600 UTC, but not 0100 UTC. For the 0000 UTC 
initialization, differences were statistically significant at 0100 UTC, but not 0600 UTC. 
The most common theme from the survey comments was that the simulated reflectivity 
in RRFS was too high, and that RRFS often had spurious storms. This is clearly reflected 
in the bottom-middle panel of Figure 34 where the line of storms in western Texas is 
clearly too intense, and to the east and south of this line there are spurious storms. Some 
representative comments included, “RRFS initializations were hot”, “Both models were a 
bit more cellular than the obs, especially the RRFS. The RRFS also had way more storms 
than the HRRR and obs had.”, “Overall, the two models produced similar depictions of 
convective evolution, although the RRFS had a higher reflectivity bias, including several 
areas of spurious storms.”, “RRFS echoes are too intense, especially compared to the 
HRRRv4 and the observations”, “Sig. difference between RRFS and HRRRv4 - RRFS 
misleads with spurious convection in the south (TN et al.); difference between the two 
models quite pronounced. Interestingly, difference between the two DA cycles less 
pronounced”, “RRFS has stronger and more storms at each time than HRRR, and 
consistently has erroneous convection in TN and stronger convection than realized. 
HRRR does much better at the intensity and location of storms, particularly one hour 
after initialization times”, “RRFS starts hot at initialization and seems to carry some of 
this ‘excess’ convection over into the start of the forecast. HRRR 21z seemed to do well 
with overall evolution...00z HRRR not quite as good”. 

Next, participants were asked to evaluate one of three randomly selected 
environment fields, and assign a subjective rating on a scale of 1-10 reflecting the overall 
skill during the first 12 hours of the forecast. Again, for each field and at both initialization 
times, the mean subjective ratings in HRRRv4 were higher than RRFS. The largest 
differences were with surface-based CAPE. The differences for 2-m dewpoint and 
surface-based CAPE were statistically significant, but the differences for 2-m 
temperature were not (Fig. 36). 

For 2-m temperature, comments frequently noted that HRRRv4 was too warm 
while RRFS was too cool. It was also commented on several times that convectively 
generated cold pools in RRFS were too strong. For example, one participant wrote, 
“HRRR appeared to be warmer than RRFS, which tends to better agree with obs later in 
the period. RRFS cold pools appear to be too cold”. For 2-m dewpoint, comments most 
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frequently mentioned that RRFS had a moist bias. Finally, for surface-based CAPE the 
common themes were that RRFS was too low and that the HRRRv4 magnitudes and 
spatial patterns were better than RRFS. 

 

 

Figure 34. Example of multi-panel comparison webpage for the D4 RRFS vs. HRRR DA evaluation. The top row 
displays simulated composite reflectivity from 2100 UTC initializations of HRRRv4 (left) and RRFS (middle) valid at 
0100 UTC compared to MRMS observations (right). The bottom row displays the same as the top, except for 0000 UTC 
initializations.  

 

 

Figure 35. Boxplots of subjective rating distributions for reflectivity and UH forecasts from 2100 and 0000 UTC 
initializations of the HRRR (green) and RRFS (red) valid at 2200, 0100, and 0600 UTC.  The mean value for each 
distribution is overlaid on the corresponding boxplots.  
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Figure 36. Boxplots of subjective rating distributions for 2-m temperature, 2-m dewpoint, and surface-based CAPE 
forecasts from 2100 and 0000 UTC initializations of the HRRR (green) and RRFS (red). The mean value for each 
distribution is overlaid on the corresponding boxplots.  

 

3.2.5 (D5) CLUE: 00Z MPAS  

 

 Three configurations of MPAS run by NSSL were assigned subjective ratings. 
These configurations included: (1) NSSL MPAS HT, (2) NSSL MPAS HN, and (3) NSSL 
MPAS RT. “HT” refers to HRRR initialization with Thompson microphysics, “HN” is HRRR 
initialization with NSSL microphysics, and “RT” is RRFS initialization with Thompson 
microphysics. Participants were asked to focus on the entire 36 h forecast period and 
focus on how the models depicted the timing, location, and mode of thunderstorms within 
the domain and how those forecasts compared to observations. An example of the model 
comparison interface is shown in Figure 37. 

Overall, the three configurations performed quite similarly and none of the 
differences between pairs of MPAS runs were statistically significant, although, MPAS 
HN had the highest mean subjective rating (Fig. 38). Some of the survey comments 
reflecting MPAS HN performance included, “The HN performed better with placement, 
mode, and intensity later in the period”, “The HN was almost always most faithful to the 
actual storm evolution. The HT often slightly overdid convection, while the RT appeared 
to underdo nocturnal convection”, “HN preferred for organisation and structure. RT and 
HT both offered hot reflectivity, RT especially so, while both also offered excess structure 
and organization (although they had the right idea) - both holding on to storms too long 
into the post-00Z period”, and “RT actually handled the previous overnight better in 
Arkansas. But for the main event in Kansas during the day these were all fairly 
impressive, but especially HT and HN which had a clear bowing structure. HN better 
depicted the narrow stratiform region with the primary bow, but both HT and HN looked 
very good”. 
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Figure 37. Example of multi-panel comparison webpage for the D5 00Z MPAS evaluation.  The panels show simulated 
composite reflectivity from 0000 UTC MPAS initializations valid at 2300 UTC 8 May 2023 from (a) NSSL MPAS HT, (b) 
NSSL MPAS HN, (c) NSSL MPAS RT, and (d) the corresponding MRMS observations.  

 

 

Figure 38. Response distributions shown with violin plots for the D5 evaluation of MPAS configurations.  The white dots 
represent the mean scores for each ensemble, and the white bars indicate the 95% confidence intervals for each mean.  
The number at the bottom of each violin plot indicates the mean subjective rating.  
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3.2.6 (D6) CLUE: NSSL1 vs. HRRR 

 

This evaluation focused on comparing the NSSL1 (1-km grid-spacing WRF model 
configuration) and HRRRv4. Particular attention was given to unique storm attribute fields 
such as 0-1 km AGL UH and 0-2 km AGL maximum wind. It is hypothesized that for these 
fields, the enhanced resolution of NSSL1 could provide improved guidance for hazards 
like tornadoes, whose parent mesocyclones and associated low-level rotation are better 
resolved using 1-km grid-spacing, and wind, which is better resolved at higher 
resolutions. Specifically, there were three survey questions: (1) “Please rate on a scale 
of 1 (Very Poor) to 10 (Very Good) how well each model captured the convective 
evolution compared to observations. Consider factors such as the number of storms 
depicted, the structure and evolution of those storms, and the timing of convective 
initiation”, (2) “Please rate on a scale of 1 (very poor) to 10 (very good) how well the 0-2 
km UH field delineates the tornado threat in each model”, and (3) “Please rate on a scale 
of 1 (very poor) to 10 (very good) how well the hourly maximum 10-m wind speed 
delineates the wind threat in each model”.  

For the convective evolution and 0-2 km AGL UH, differences in mean subjective 
ratings were quite similar, and although HRRRv4 was slightly higher than NSSL1, the 
differences were not significant (Fig. 39). For 0-2 km AGL UH, there were not many 
tornado events during SFE 2023, so the similar ratings likely reflect many null cases. The 
results for maximum 10-m wind were different, though. NSSL1 mean subjective ratings 
were notably higher than HRRR and this difference was significant (Fig. 39). There were 
several cases in which the NSSL1 had a much better signal in the 10-m maximum wind 
gusts associated with severe-wind-producing mesoscale convective systems or small 
clusters of storms producing severe wind. One such example is shown in Figure 40. In 
this case, NSSL1 had an improved evolution and structure of a bowing MCS that moved 
through eastern Kansas and western Missouri, producing many severe wind and some 
significant wind gusts. Additionally, the NSSL1 maximum 10-m winds better delineated 
the areas where severe wind gusts were observed. A few of the survey comments 
reflecting the improved wind guidance from NSSL1 are highlighted as follows: “They both 
had trouble with the convection behind and on the edge of the MCS and didn't really 
develop it for a while. The 1-km though did handle the speed of the MCS much better. 
As far as hazards go, the 1-km NSSL-WRF did a great job”, “A lot of times models have 
a nice accurate depiction, but to be in the exact right place with the exact right forward 
propagation is very rare. The NSSL1 forecast looked pretty amazing in that regard. This 
shows up in the reflectivity and in the 10-m winds. HRRR was playing catch up a bit, and 
structure wasn't as good. I thought the UH swath in NSSL1 was near perfection. 
Strongest track goes right over the 1 tornado report, and then the signal really dissipates 
in SE KS, whereas HRRR has some spotty strong tracks later in time”, and “Biggest 
difference is in depiction in wind. NSSL-WRF did far better in depicting wind reports 
associated with the MCS, while the HRRRv4 was displaced well to the northwest relative 
to reports”. 
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Figure 39. Boxplots of subjective rating distributions for overall convective evolution, 0-2 km AGL UH, and maximum 
10-m wind speeds from HRRRv4 and NSSL1. 

 

 

Figure 40. Simulated composite reflectivity with LSRs of severe wind gusts overlaid (blue squares) for 0000 UTC 
initializations valid 2200 UTC 9 May 2023 from (a) HRRRv4, (b) NSSL1, and (c) MRMS observations. (d)-(f) same as 
(a) and (c), except (d) and (e) show 4-h maximum 10-m winds.  
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3.3 Evaluation – CAM (E)nsembles 

3.3.1 (E1) CLUE: 00Z RRFS vs. HREF 

 

Similar to the deterministic evaluation of the RRFS control member to the 
operational HRRR (section D3), the RRFS single-physics ensemble was compared 
directly to the HREF, which is the operational CAM ensemble in the NWS. This evaluation 
was done for the 00Z run to assess the readiness of the RRFS ensemble to replace the 
HREF for operational convective forecasting applications on Day 1. Participants were 
asked to examine probabilistic storm-attribute fields, including updraft helicity, updraft 
speed, 10-m wind speed, and composite reflectivity, and provide a single rating for the 
convective day (i.e., f12-f36). A five-point Likert scale was also used in this evaluation to 
rate the RRFS ensemble as much worse, slightly worse, about the same, slightly better, 
or much better than the HREF for each field. For example, the 00Z RRFS forecast was 
generally rated slightly worse than the 00Z HREF forecast for the derecho-producing 
MCS across Kansas on 9 May 2023, owing to the HREF having better orientation and 
centering of probabilities on the preliminary local storm reports (Fig. 41). 

For the storm-attribute fields, the 00Z HREF has slightly higher ratings for updraft 
helicity, where the median rating was slightly worse for the RRFS compared to the HREF 
(Fig. 42). In the subjective comments, SFE participants noted that the RRFS ensemble 
is more likely to generate high probability (i.e., ≥50%) false alarm forecasts (with no 
severe weather reported) when compared to the HREF. The rating distributions are more 
neutral for updraft speed, 10-m wind speed, and composite reflectivity. These “about the 
same” ratings are really more indicative of positives and negatives of the RRFS and 
HREF forecasts balancing out than the forecasts looking similar. 

 

 

Figure 41. Example of the 2023 HWT SFE model comparison page for the RRFS vs. HREF valid for the convective 
day of 9 May 2023.  The 24-h neighborhood maximum ensemble probability (NMEP) forecasts of UH are shown for the 
00Z HREF (left panel) and the 00Z RRFS ensemble (right panel). The observed preliminary local storm reports (wind 
– blue boxes; sig wind – black boxes; hail – green circles; sig hail – black circles) are overlaid in both panels.  
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Figure 42. Distributions of subjective ratings (-2 to +2) by SFE participants of the 00Z RRFS ensemble compared to 
the HREF for updraft helicity (yellow), updraft speed (purple), 10-m wind speed (blue), and composite reflectivity (red).  
The ratings represent the RRFS ensemble compared to the HREF -2: Much Worse; -1: Slightly Worse; 0 – About the 
Same; +1: Slightly Better; +2: Much Better.  

 

For the ensemble mean environmental fields, the RRFS was typically rated about 
the same to slightly worse than the HREF (Fig. 43). While the deterministic RRFS CAPE 
forecast was rated slightly worse more often than the other environmental fields, the 
RRFS ensemble mean CAPE forecast actually received higher average ratings than the 
2-m temperature and dewpoint forecasts. For 2-m dewpoint, the RRFS was typically more 
moist than the HREF in the warm sector, which was perceived by the SFE participants to 
be a slightly worse forecast. Another frequent comment was that the RRFS mean 
environmental fields displayed more detailed structure and features than the HREF mean 
environmental fields, which is not surprising given the greater diversity in the HREF in 
terms of model core and physics. 
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Figure 43. Same as Fig. 42, except for environmental mean fields of 2-m temperature (pink), 2-m dewpoint (light green), 
and SBCAPE (yellow). 

 

3.3.2 (E2) CLUE: 12Z Day 1 RRFS Physics & Time-Lagging vs. HREF 

 

This evaluation assessed the skill of multiple RRFS ensemble configurations 
compared to the operational HREFv3 at Day 1 lead times. At the time of this experiment, 
it was unknown how many RRFS ensemble members would be computationally feasible 
at 6-hour initialization times. Therefore, multiple time-lagging strategies were tested to 
determine if they could meet or exceed the skill of a 10-member RRFS ensemble 
initialized at a single time (t). Additionally, this evaluation tested the impact of a mixed-
physics approach within the ensemble to determine if the increased member diversity 
could improve forecast quality compared to a single-physics (with stochastic 
perturbations) approach. Participants were asked to assess and compare the skill of the 
following six ensembles initialized at 1200 UTC: 

 

1. RRFS (single physics; 10 members at t) 

2. RRFS-TL6 (single physics; 6 members at t and 6 members at t-6h) 

3. RRFS-TL12 (single physics; 6 members at t and 6 members at t-12h) 
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4. RRFSphys (mixed physics; 10 members at t) 

5. RRFSphys-TL6 (mixed physics; 6 members at t and 6 members at t-6h) 

6. HREF (operational HREFv3) 

 

Respondents were provided 4-h and 24-h updraft helicity, updraft speed, and 10-
m wind speed neighborhood probabilities, as well as 1-h composite reflectivity and 6-h 
QPF fields with which to base their assessment of the ensembles. MRMS MESH, local 
storm reports, NWS warnings, and NLDN lightning flashes were provided as ground truth 
observations. For the first part of this evaluation, participants were asked to “Subjectively 
rate on a scale of 1 (Very Poor) to 10 (Very Good) the 24-h ensemble storm-attribute 
products during the Day 1 12-12Z period with regard to the quality of guidance for severe 
weather forecasting. Focus primarily on Updraft Helicity, but Updraft Speed & 10-m 
Winds can be used to supplement the ranking, especially on days without supercells.” 
Respondents were further instructed to rate each ensemble independently, such that the 
assessment of one ensemble should not directly consider the performance of another 
ensemble. This method enabled participants to rate different ensemble forecasts equally 
when warranted and was found to be more robust against missing data than a traditional 
ranking system. Upon completing these assessments, participants were given an 
opportunity to share their thoughts about any differences in the ensembles via an optional 
open response question. Participants then shared and elaborated on these insights 
during a group discussion period immediately following the survey. 

The HREF received the highest rating on average during the 5-week experiment 
with a mean subjective score of 6.774 (Fig. 44). The RRFS ranked second at 6.730, 
followed by the RRFSphys (6.600), RRFS-TL6 (6.341), RRFSphys-TL6 (6.171), and 
RRFS-TL12 (6.032). It is notable that there was only a 0.742 difference between the 
highest and lowest mean ratings, suggesting that all six ensembles performed similarly 
on average. This is further supported by the response distributions shown in Figure 44 
which demonstrate similar characteristics across all configurations. Indeed, only the 
difference between the HREF and RRFSphys-TL12 mean scores was found to be 
statistically significant at the 95% confidence level. All ensembles except the HREF and 
RRFSphys-TL6 received a minimum rating of 2 at some point during the experiment, and 
all ensembles except the RRFSphys-TL6 received a maximum rating of 10. Note that 
some ensembles experienced outages during the experiment, and so the number of 
responses is not uniform across all ensembles. 

Objective statistics (ROC area and reliability) were also computed over the SFE 
domains for probabilities of simulated reflectivity ≥ 40 dBZ in the HREF, RRFS, and 
RRFSphys. The statistics follow the subjective ratings quite closely, with HREF have the 
highest ROC area (0.821), followed by RRFS (0.813) and RRFSphys (0.804; Figs. 45a 
& 46a). Additionally, HREF had improved reliability over RRFS, while RRFS and 
RRFSphys were quite similar in terms of reliability (Figs. 45b and 46b). 
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Figure 44. Distribution of subjective scores received by each ensemble at Day 1 lead times during the 5-week 
experiment. The white dots represent the mean scores for each ensemble, and the white bars indicate the 95% 
confidence intervals for each mean. 

 

 

Figure 45. (a) ROC curve for reflectivity probabilities ≥ 40 dBZ over SFE 2023 domains for HREF (orange) and RRFS 

(blue). (b) Reliability diagrams for reflectivity probabilities ≥ 40 dBZ. 
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Figure 46. Same as Figure 27, except for RRFS and RRFSphys. 

 

In the open response question and post-survey discussion, participants again 
commented on how similar the 12Z ensembles were on average at Day 1 lead times. 
When differences in the forecasts were observed, respondents noted that the RRFS 
ensembles tended to produce neighborhood probabilities that covered a smaller and 
more focused spatial extent than the HREF. These “bullseye” forecasts were often 
praised by respondents for a perceived reduction in false alarm area, but the smaller 
probability fields also occasionally missed or underforecast severe reports near the 
periphery of the events (Fig. 47). Participant opinions of these differences varied greatly 
each day, and post-survey discussion frequently revealed that ratings were closely tied 
to whether the respondent placed greater value on detection or false alarm when making 
their assessments. Overall, the RRFS ensembles were found to provide similar or slightly 
reduced forecast quality to the HREF at Day 1 lead times. 

Respondents indicated some surprise at how similar the time-lagged ensembles 
were on average when compared to the ensembles initialized at a single time. One 
participant commented, “[T]he RRFS time-lagged solutions didn't significantly change for 
each lag. Not sure if that is/was an issue with dispersion (underdispersed)?” while another 
stated, “The non-time-lagged ensembles tended to do better, but the differences are 
pretty small.” In general, the time-lagged solutions were perceived to be slightly worse 
than the non-lagged ensembles, and the 12-h lag was viewed less favorably than the 6-
h lag. That said, there were a few cases during the experiment when participants felt the 
time-lagging strategies helped increase the dispersiveness of the RRFS and improved 
the forecast: “The RRFS was quite underdispersive [...]. However, time-lagging improved 
this a bit, especially on day 1. In particular, the RRFS-TL6 was somewhat close to the 
impressive HREF output for day 1.”  

Finally, participants were undecided on the benefits of a mixed-physics ensemble. 
In some cases, the mixed-physics ensembles produced more dispersive forecasts which 
increased the areal extent of the neighborhood probabilities without adversely affecting 
the probability magnitudes. One participant summarized this well, stating, “The advantage 
of time-lagged ensembles is not clear, but the multi-physics ensemble expands the region 
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of high probability and improves the probability forecasts.” However, these differences 
were typically small and did not have much apparent impact on forecast quality as noted 
by another participant: “Generally speaking, RRFS and RRFSphys seemed to perform 
similarly.” Based on these results, it appears that the time-lagging and mixed-physics 
strategies are at least comparable in quality to a 10-member RRFS ensemble initialized 
at a single time. As such, these strategies may be viable alternatives if computational 
limitations preclude a larger operational RRFS ensemble. 

 

 

Figure 47. 24-h neighborhood probabilities of updraft helicity exceeding the 99.85th percentile for the period 1200 – 

1200 UTC 11-12 May 2023. Red triangles represent tornado reports, blue squares are wind reports, and green circles 
are hail reports. 

 

3.3.3 (E3) CLUE: 12Z Day 2 RRFS Physics & Time-Lagging vs. HREF 

 

This evaluation was identical to the previous one, except participants evaluated 
the HREF and RRFS ensembles at Day 2 lead times. Specifically, respondents were 
asked to “Subjectively rate on a scale of 1 (Very Poor) to 10 (Very Good) the 24-h 
ensemble storm-attribute products during the Day 2 12-12Z period with regard to the 
quality of guidance for severe weather forecasting. Focus primarily on Updraft Helicity, 
but Updraft Speed & 10-m Winds can be used to supplement the ranking, especially on 
days without supercells.” Participants were given access to the same fields and 
observations as before, but the forecast products were derived from the previous day’s 
12Z ensemble runs. As such, this evaluation focused on ensemble forecast quality at 
forecast hours 24 - 48. 

As before, the HREF once again received the highest ratings overall, with a mean 
subjective score of 6.500 (Fig. 48). This is only a decrease of 0.274 from the Day 1 scores, 
suggesting impressive consistency in forecast quality at longer lead times. In contrast, all 
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five RRFS ensembles saw notably degraded performance at Day 2 lead times. The RRFS 
received the second highest mean rating of 5.653, followed by the RRFSphys (5.466), 
RRFSphys-TL6 (5.388), RRFS-TL6 (5.349), and RRFS-TL12 (5.315). The RRFS mean 
rating fell a considerable 1.074 points compared to its Day 1 score, and this was found to 
be statistically significant when compared to the HREF at the 95% confidence level. 
Indeed, the HREF Day 2 mean rating was significantly higher than that of all RRFS 
ensembles at the same lead time. Otherwise, the RRFS ensembles all performed similar 
to each other on average, and their mean scores were not significantly different at the 
95% confidence level. All six ensembles received a low rating of 1 at some point during 
the 5-week experiment, and the HREF was the only ensemble to receive a rating of 10. 
The RRFSphys and RRFS-TL6 ensembles both received a maximum rating of 9, while 
the other RRFS ensembles peaked at a rating of 8. 

 

 

Figure 48. Same as Fig. 44, but for Day 2 lead times. 

 

Participant comments were somewhat critical of the RRFS ensembles at the Day 
2 lead times, and particularly noted the degraded performance compared to the Day 1 
forecast. For example, a couple representative comments from the experiment read, 
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“RRFS had basically zero signal for the day 2 event, while the HREF showed good 
coverage of modest probabilities,” and, “The RRFS configurations were comparable to 
HREF on Day 1, but I thought the HREF was the clear winner on Day 2.” On average, 
the RRFS ensembles tended to underforecast storm attribute neighborhood probabilities 
at Day 2 lead times and often exhibited large spatial errors compared to the HREF. Some 
participants indicated that the timelagged ensembles potentially improved the forecast 
quality by increasing the spatial coverage of the probabilities: “For the Day 2 - the 
timelagged members seemed to perform better (particularly the TL6) with greater spatial 
errors in the RRFS/RRFSphys.” However, differences between the time-lagged and non-
lagged ensembles varied greatly from day to day, and participant opinions did not reach 
a consensus on their skillfulness at Day 2 lead times. 

The mixed-physics ensembles were again found to be similar to or worse than the 
single-physics ensembles in this evaluation. Participants noted the mixed-physics 
ensembles often produced lower neighborhood probabilities than the other ensembles, 
and the probability fields tended to cover much larger areas. This effectively increased 
the false alarm of the ensemble while also reducing probability magnitudes where severe 
weather was observed. However, the greater spatial coverage of the neighborhood 
probabilities sometimes captured severe events that were missed by the single-physics 
ensembles. Respondents varied in how favorably they viewed these differences, and it 
is unclear from these results whether the current mixed-physics scheme is viable at Day 
2 lead times. Overall, this survey found that more work is needed for the RRFS ensemble 
to reach an equivalent forecast quality to the HREF at these longer lead times. Time-
lagging strategies showed some potential for improved forecasts at the Day 2 time-frame, 
but results were mixed and further investigation is needed.  

 

3.3.4 (E4) CLUE: Medium-Range Lead Time/Core/Members 

 

In this survey, subjective ratings of forecast skill were assigned to CAM ensemble 
guidance from a 5-member subset of the NCAR FV3 and 5-member MPAS ensemble at 
lead times of 3-5 days. Additionally, subjective ratings were assigned to the 10-member 
NCAR FV3 for lead times of 3-7 days. Specifically, SFE participants were asked, 
“Subjectively rate on a scale of 1 (Very Poor) to 10 (Very Good) the 24-h ensemble storm-
attribute products during the 12-12Z period with regard to the quality of guidance for 
severe weather forecasting. Focus primarily on Updraft Helicity, but Updraft Speed & 10-
m Winds can be used to supplement the ranking, especially on days without supercells. 
In addition, the 4-h storm-attribute products and 1-h composite reflectivity paintballs and 
probabilities can be utilized to adjust or fine-tune the overall ratings.” An example of the 
forecasts is shown in Figure 49. 

In comparisons between the NCAR MPAS and 5-member NCAR FV3 ensemble 
subset (Fig. 50), the NCAR MPAS ensemble performed best at every lead time it was 
available, and the differences in mean subjective ratings were statistically significant 
(Student’s t-test with 𝛼 = 0.05). One representative comment was, “The NCAR-FV3 
looked like it split into two areas of focus shortly after the day 5 forecast which didn’t 
really represent the swath of storm report we actually saw. MPAS pretty much kept to 
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one bullseye for days 3-5 and did generally better than the FV3.” However, participants 
sometimes noted over-forecasting in NCAR MPAS. 

 

 

Figure 49. Example of multi-panel comparison webpage for the E4 Medium-Range Lead Time/Core/Members 

evaluation.  In each panel, 24 h maximum UH (shaded) and neighborhood probability of UH ≥ 99.85th percentile 
(contours) is displayed. LSRs are also overlaid (wind – blue squares, hail – green circles, and tornado – upside-down 
triangles; significant reports are filled in black).  

 

More generally, there were several days in which value was highlighted all the way 
out to Day 7. For example, for one case a participant noted, “The general region was 
highlighted out to Day 7, which was impressive. There was an eastward displacement of 
the probs in all models, though.” Also, it was common for there to be inconsistent forecast 
quality with decreasing lead time. In other words, sometimes the later lead times actually 
performed better than the shorter lead times. For example, in one case a participant 
commented, “NCAR FV3 was very impressive at long ranges around 6-7 days, but there 
tended to be poorer performance and some jumpiness by Day 5 forward.” 
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Figure 50. Distributions of subjective ratings for the NCAR MPAS and 5-member NCAR FV3 ensemble subset at Day 
3 (left), Day 4 (middle), and Day 5 (right) lead times.  Mean subjective ratings are indicated at the bottom of each violin 
plot.  The white dots represent the mean scores for each ensemble, and the white bars indicate the 95% confidence 
intervals for each mean.  

 

For the 10-member NCAR FV3, there was a gradual degradation in mean 
subjective ratings with increasing lead time from Days 3 to 6. By Day 6, the mean 
subjective ratings appeared to level out with Day 6 and 7 both achieving a mean 
subjective rating of 4.50 (Fig. 51). Additionally, there were only small differences in mean 
subjective ratings between the 5- and 10-member NCAR-FV3 ensembles. For example, 
at Day 5 the 10-member mean rating was 4.64 (Fig. 50), while the 5-member was 4.61 
(Fig. 50). 
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Figure 51. Distributions of subjective ratings for the 10-member NCAR FV3 ensemble for lead times of Day 3 to Day 7. 
Mean subjective ratings are indicated at the bottom of each violin plot.  The white dots represent the mean scores for 
each ensemble, and the white bars indicate the 95% confidence intervals for each mean.  

 

3.4 Evaluation – (A)nalyses 

3.4.1 (A1) Mesoscale Analysis Background 

 

Two hourly versions of 3D-RTMA with different backgrounds were subjectively 
evaluated by participants during the 2023 HWT SFE. The evaluation was performed to 
assess the quality and utility of these analysis systems for situational awareness and 
short-term forecasting of convective-weather scenarios. The 3D-RTMA RRFS used the 
FV3-based RRFS as the first-guess background while the 3D-RTMA HRRR used the 
operational HRRR for first-guess background and serves as the baseline for this 
evaluation. The hourly analyses for composite reflectivity, 2-m temperature (e.g., Fig. 52), 
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dewpoint, SB/ML/MUCAPE, and the significant tornado parameter (STP) were examined 
during the 18-03 UTC period on the following day. The SFE participants were tasked with 
looking through all of these fields during this period and arrive at a single rating of the 
quality of the 3D-RTMA RRFS compared to the 3D-RTMA HRRR.  

In general, the two versions of 3D-RTMA were typically similar to one another with 
the 3D-RTMA RRFS having slightly larger errors over the domains in 2-m temperature 
and dewpoint. As seen in prior years, the biggest differences in the 2-m temperature field 
were most commonly associated with effects from convection. In general, the HRRR-
based version handled the effects of convection on 2-m temperature better than the 
RRFS-based version through more accurate representation of the size, shape, and 
magnitude of cold pools and thunderstorm outflows (e.g., eastern Kansas in Fig. 52). In 
terms of the overall subjective ratings from SFE participants, the majority of responses 
indicated the 3D-RTMA RRFS was about the same to slightly worse than the HRRR-
based version (Fig. 53). The participants noted some common issues in the RRFS-based 
version: overall 2-m moist bias across the domain, too moist in dry air (e.g., behind 
dryline), low CAPE bias overall, horizontal convective-roll-like structures in the CAPE field 
were rather prominent and distracting, thunderstorm outflows were often too early, cold, 
and/or expansive, and spurious convection in the background 1-h forecast could often 
disrupt derived environmental fields (e.g., STP) in a negative fashion. 

 

 

Figure 52. Example of the website comparison page for the 3D-RTMA during the 2023 HWT SFE.  The 3D-RTMA 
HRRR baseline is shown in the left panel, the 3D-RTMA RRFS is in the middle panel, and the difference plot (3D-
RTMA RRFS - 3D-RTMA HRRR) is shown in the right panel. The 2-m temperature analysis valid at 2300 UTC on 12 
May 2023 is shaded in the left and middle panels.  The difference (analysis-obs) at METAR sites is shown by the size 
and shading of the dots in the left and middle panels. 

 

In addition to examining the 3D-RTMA systems at their native resolution (i.e., 3-
km grid spacing), participants also examined upscaled versions (i.e., 40-km grid) for 
comparison to the widely used SPC RAP-based mesoanalysis. This was a practical 
exercise to determine the readiness of the 3D-RTMA systems to replace the functionality 
and capacity currently served by the SPC mesoanalysis. SFE participants were asked to 
rank (from best to worst; i.e., 1 to 3) the overall quality of the analysis for situational 
awareness and short-term forecasting, despite the limitation of not having observational 
truths for all of the fields. The 3D-RTMA HRRR had the lowest (i.e., best) mean ranking 
of 1.7, while the SPC mesoanalysis came in second with a mean ranking of 2.0, and the 
3D-RTMA RRFS had the highest mean ranking of 2.3. 
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Figure 53. Percentage of subjective ratings by SFE participants for each rating category (Much Worse, Slightly Worse, 
About the Same, Slightly Better, and Much Better) of the 3D-RTMA RRFS compared to the 3D-RTMA HRRR. 

  

3.4.2 (A2) Storm-scale Analyses 

 

The Warn on Forecast System (WoFS) was used to explore whether a high 
resolution, rapidly updating ensemble DA system can serve as a verification source for 
severe weather. Specifically, the 15-minute maximum forecasts of 80-m winds, 2-5 km 
AGL UH, and column-maximum updraft speed from WoFS (cycled every 15 minutes) 
were used as a proxy for the analysis (i.e., ground truth) of severe weather. The WoFS 
ensemble analysis fields were accumulated from 1800 UTC through 0300 UTC for 
comparison with MRMS-derived products [composite reflectivity, midlevel rotation tracks, 
and maximum estimated size of hail (MESH)] and preliminary local storm reports, (Fig. 
54).   

The goal of the evaluation was to assess the current capability of WoFS to produce 
output for diagnosing severe weather. Overall, the WoFS ensemble analysis fields were 
positively viewed in terms of lining up with radar-derived proxies of severe weather, 
preliminary local storm reports, and a subjective assessment of severe weather based on 
the environment. Overall, the WoFS analyses of 2-5 km AGL UH and 80-m winds received 
higher subjective ratings than the column-maximum updraft speed (Fig. 55) in terms of 
alignment with severe-weather occurrence. The 80-m wind analyses have been 
examined in previous years, so the slightly higher mean ratings for the 2-5 km AGL UH 
analyses are surprising and encouraging. Based on participant comments, there is room 
for improvement in terms of optimizing the analysis products, which simply use the 
ensemble maximum for UH and updraft speed. Overall, the participants found this to be 
an interesting and promising approach for using a rapidly cycling convection-allowing 
ensemble system. 
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Figure 54. Example of the website comparison page for the WoFS analyses during the 2023 HWT SFE.  The 9 May 
1800-2300 UTC accumulated ensemble 90th percentile 80-m wind is shown in the upper-left panel, the ensemble 
maximum 2-5 km AGL UH in the upper-middle panel, and the ensemble maximum column-maximum updraft speed in 
the upper-right panel.  The observed MRMS composite reflectivity is in the bottom-left panel, observed MRMS midlevel 
rotation tracks are in the bottom-middle panel, and the MRMS MESH is in the bottom-right panel.  In the upper-left 
panel, the wind damage reports are the black circles while the measured gusts are the open squares shaded by the 
difference (analysis-obs) of the gust measured at that location. 

 

 

Figure 55. Distributions of subjective ratings (-2 to +2) by SFE participants of the WoFS storm-scale analysis for 
ensemble 90th percentile 80-m winds (blue), 2-5 km AGL UH (light orange), and column-maximum updraft speed (light 
purple), where the ratings represent how well the WoFS analyses align with the MRMS observed fields and preliminary 
severe wind reports: -2 – Very Poorly; -1 – Poorly; 0 – Unsure/Neutral, neither poorly nor well; 1 – Well; 2 – Very Well.  
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3.5 Evaluation – Funded (P)rojects 

3.5.1 (P1) ISU ML Severe Wind Probabilities 

  

This evaluation assessed two machine-learning models which estimate the 
probability that a wind damage report was associated with severe-intensity winds (> 50 
kts). The first version of the guidance utilizes a stack generalized linear model (GLM), 
which is an ensemble of multiple models. The second version employs a gradient boosted 
machine (GBM) which was determined to be the best single model via objective 
measurements on an independent test set. The probabilities produced by either machine 
learning model were displayed alongside observed wind reports on an interactive website 
designed for this evaluation (Fig. 56). Participants were asked to evaluate on a scale of 
1 (very poor) to 10 (very well) how well either machine learning model provided useful 
and accurate probabilistic information regarding the likelihood that wind damage reports 
were associated with winds ≥ 50 knots. 

The results show a relatively small difference in evaluated performance between 
the two models (Fig. 57). The GLM received a mean subjective score of 6.93, which was 
slightly higher than the GBM’s mean score of 6.67. Additionally, the violin plots indicate a 
larger number of scores at or above 8 were assigned to the GLM model compared to the 
GBM. These results suggest that participants perceived the GLM method as slightly better 
than the GBM when identifying severe wind reports during this experiment. 

 

 

Figure 56. Example of the interactive webpage developed for the ISU Machine-Learning Severe Wind Probability 
evaluation during the 2023 SFE. The preliminary wind reports are shaded with the probability that the report was 
associated with a wind gust of ≥50 knots from the various ML algorithms. The user has the option to zoom/roam, hover 
over a report to see associated probabilities and report text, and choose to view all reports, just measured reports, or 
just damage reports.  
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Figure 57. Violin plots representing the distribution of subjective ratings assigned to the GBM (green) and GLM (blue) 

models. A rating of 10 denotes excellent performance in identifying severe wind reports. 

 

3.5.2 (P2) WoFS-PHI Spatial Hazard Probabilities 

 

Machine-learning-based spatial hazard probabilities using predictors from WoFS 
and ProbSevere Version 2 (i.e., WoFS-PHI probabilities) were evaluated during a next-
day evaluation activity. The primary goals of the activity were to: 1) determine the spatial 
radii (from 7.5 to 39 km) that participants most preferred as a function of lead time and 
WoFS initialization time, 2) assess the usefulness of the WoFS-PHI’s 5-minute updates, 
and 3) solicit general feedback on the usefulness and design of WoFS-PHI. 

Preliminary findings suggest that, overall, participants favored the 15- and 30-km 
radii at lead times of 1, 2, and 3 hours, as these radii received the most favorable rankings 
(smallest numbers; Fig. 58). As lead time increased, participants showed a slight 
preference toward larger radii. For example, at 1 hour lead times, the 15 km radius had 
a slightly smaller (i.e., better) mean ranking than the 30 km for both WoFS initialization 
times; meanwhile, at 3h lead times, the 30km received a slightly better ranking than the 
15km. While participants generally ranked both the 7.5 and 39km poorly, they tended to 
prefer the 7.5km to the 39km radius at 1h lead times and the 39km at later lead times 
(Fig. 58). These results are unsurprising, since later lead times are associated with 
greater uncertainty of storm placement and intensity. More surprising was that 
participants’ rankings did not seem to vary much between the early and late WoFS 
initialization times (Fig. 58). One possible explanation for these results was that both the 
early and late WoFS initialization times tended to be at or after storm initiation, resulting 
in similar underlying degrees of uncertainty in storm placement and intensity. 

Participants were also asked to provide feedback on how the WoFS-PHI 5-minute 
updates impacted the forecast. Approximately 60% of participants felt the updates made 
the forecasts somewhat or much better, and another 30% of participants thought the 
updated and older forecasts were about the same. These results suggest that the rapid 
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5-minute WoFS-PHI updates would be at least somewhat useful and would very rarely 
degrade the forecast. 

When asked to provide additional written feedback, many participants stated they 
liked the spatial precision of WoFS-PHI and mentioned they found the product most 
useful when storms were just beginning to initiate. However, many participants also 
expressed a desire to see higher-magnitude probabilities, especially for the smaller radii. 

 

 

Figure 58. Violin plots of rankings of 7.5 km (gold), 15 km (red), 30 km (blue), and 39 km (purple) radii from WoFS-PHI 

spatial hazard probabilities for different sets of early and late WoFS initialization times and forecast lead times. 
Rankings from all hazards are aggregated. Lower rankings (i.e., smaller numbers are more favorable.  
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3.6 (O)utlook Evaluations and Mesoscale Discussions (MDs) 

3.6.1 (O1) Day 1/2/3/4 Outlooks 

 

 In this evaluation, the experimental Day 1-3 outlooks for tornado, wind, and hail, 
and Day 4 outlook for total severe produced by SFE teams were subjectively rated and 
compared. Generally, average ratings decreased with increasing lead time, as expected 
(Fig. 59).  The Day 4 probabilities were rated only slightly lower, on average, than the 
Day 3 individual hazard outlooks, suggesting that generating Day 4 outlooks similarly to 
Day 3 may be operationally feasible.    

 

 

Figure 59. Boxplots depicting the distributions of subjective ratings assigned to the Days 1-3 Probability and Conditional 

Intensity outlooks for tornado (red), hail (green), and wind (blue); as well as Day 4 all hazards probability and conditional 
intensity (yellow) outlooks.  

 

3.6.2 (O2) Day 1 Outlook Update (w/ WoFS) 

 

In this evaluation, SFE participants were asked to, “Subjectively compare the Day 
1 Outlook Update (Forecaster 1) to the Day 1 Outlook issued by the group in the morning 
from much worse to much better”. The probability and conditional intensity outlooks for 
tornado, hail, and wind were compared. For the probability outlooks, the hail and wind 
outlook updates were most frequently rated “about the same” or “slightly better”, while 
the tornado outlooks were dominated by “about the same” responses. For the conditional 
intensity outlooks, both tornado and wind outlooks were dominated by “about the same” 
responses, while for hail there was a slight tendency toward “slightly better” (Fig. 60). 
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Figure 60. Response frequencies for the O2 evaluation comparing Day 1 Outlook updates to earlier group issued Day 

1 outlooks. 

 

3.6.3 (O3) SPC Impacts System: Day 1 Outlook Tornado Counts and Impacts 

 

The SPC Impacts System was run on the Day 1 tornado outlooks with conditional 
intensity information to estimate the number of tornadoes by EF scale and the potential 
societal impacts. This tool includes information on population impacted by tornadoes of 
different intensities, number of schools and mobile homes potentially affected by any 
tornadoes, and EF2+ tornadoes, and estimates of casualties. Participants were asked 
to, “Discuss whether the quantitative impact estimates are consistent and aligned with 
your expectation of potential tornado weather impacts for the day”, and then there was 
an optional comment box in which participants were asked to “Comment on the 
visualization aspects of displaying the quantitative-impact information and offer any 
suggestions for improvement”. 

Given the below average tornado numbers that occurred during SFE 2023, this 
evaluation was dominated by null events. There was one localized event that occurred 
11 May 2023 in which two EF1 tornadoes affected central Oklahoma. For this event, one 
participant commented, “... it seems to show expectation of 6 tornadoes and 1 of then 
significant. It seems to show 82 people would be affected? That actually seems like not 
a bad estimate of what occurred in Oklahoma”. For some of the null events, comments 
such as, “Low probability of tornado impacts are captured well”, were common, as well 
as comments like, “Not quite sure how to evaluate this product”. 

 

3.6.4 (MD-R2O) R2O Group MD Activities 

 

As part of the afternoon forecasting activities on the R2O Desk, experimental 
mesoscale discussions (MDs) were generated during the 2023 HWT SFE. These MDs 
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were generated daily in Google Slides (example provided in Fig. 61) by all R2O Group 
participants from 2:15-3:00 p.m. CDT covering a limited-area domain with the greatest 
severe potential across the CONUS. There were two items of emphasis on these 
experimental MDs in utilizing WoFS during the watch-to-warning time frame: 1) focus on 
a meso-beta corridor with the greatest potential for severe weather over the next few 
hours and 2) estimate the expected peak intensity of tornado, hail, and convective winds 
within that corridor. SPC forecasters developed a matrix of overlapping peak intensity 
bins for participants to select from in making these intensity forecasts for the MDs. 
Subjective evaluation of these intensity forecasts on the following day generally revealed 
skill in selecting the appropriate intensity bin. More rigorous evaluation will be done to 
assess the feasibility of implementing this approach in operational MDs at SPC. 

 

 

Figure 61. Example of an experimental MD created on 9 May 2023 using WoFS output. The table in the bottom right 
indicates the forecast of the peak intensity expected for tornadoes, hail, and convective wind within the MD area during 
the valid time. 

 

3.6.5 (MD-Innovation) Innovation and Virtual Group MD Activities 

 

Similar to the R2O desk, the Innovation and Virtual groups engaged in an 
afternoon mesoscale discussion activity. In this activity, each participant issued a 
forecast consisting of a geographic threat area, and a text discussion. The threat area 
was created using the WoFS web viewer drawing tool and took one of three formats: (1) 
A single contour highlighting a region of expected severe weather along the track of an 
individual storm, (2) two contours, one encompassing a broader region where severe 
weather is expected and the second, smaller contour outlining what is perceived as the 
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corridor of greatest risk, or (3) A single contour highlighting a broader region where 
severe weather was expected. Each participant issued their first set of predictions during 
the 2:15-3pm CDT time period, took turns discussing their product from 3-3:15pm CDT, 
and issued a second set of predictions from 3:15-3:45pm CDT. Finally, from 3:45-4pm 
each participant participated in a short survey with targeted questions on WoFS products 
used, changes in forecasts between 1st and 2nd hours, and overall confidence. The 
activity revealed many different ways in which WoFS guidance could be used in the 
watch to warning time frame. More rigorous evaluation will be done with the survey 
responses to assess most frequent products used, forecast changes, and overall 
confidence. An example outlook is provided in Figure 62. 

 

 

Figure 62. Example of an experimental MD created on 15 May 2023 using WoFS output. 
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4. Summary 

 

The 2023 NOAA HWT Spring Forecasting Experiment (2023 SFE) was conducted 
virtually from 1 May – 2 June by the SPC and NSSL with participation from forecasters, 
researchers, model developers, university faculty, and graduate students from around the 
world. The primary goals of the 2023 SFE were to (1) evaluate convection-allowing model 
and ensemble guidance for identifying optimal configurations of convection-allowing 
versions of FV3 and CAM ensembles, including several carefully designed and controlled 
experiments as part of the Community Leveraged Unified Ensemble (CLUE), (2) study 
how forecasters and meteorologists utilize CAMs and CAM ensembles, such as WoFS, 
and evaluate various experimental severe weather outlooks generated using WoFS and 
other CAM ensembles for lead times from one hour to 4 days, and (3) evaluate different 
CAM ensemble post-processed guidance with an emphasis on those using machine-
learning algorithms. 

 

Several preliminary findings/accomplishments from the 2023 SFE are listed below: 

  

• WoFS was used for updating full-period hazard forecasts valid 2100-1200 UTC 
and corresponding conditional intensity guidance, as well as generating 
experimental mesoscale discussions using WoFS and other CAM guidance. 

o Subjective evaluations indicated that updated hazard probabilities were 
generally improved for hail and wind, while improvement in the conditional 
intensity guidance was only noted for hail. 

o One of the most popular activities was generating experimental mesoscale 
discussions using WoFS and other CAM guidance. This activity provided 
an opportunity to synthesize a variety of information from the experimental 
models to generate forecast products first-hand, which often led to an 
appreciation of the challenges faced by SPC forecasters in generating 
short-fused forecast products. 

• SFE 2023 marked the first time that Day 4 total severe outlooks were issued and 
the second year for individual hazard outlooks for Day 3. Early indications are that 
these products could be operationally feasible, and future SFEs will continue to 
test experimental products at these extended range lead times. 

• Examined and assessed various methods to produce first-guess calibrated 
probabilistic hazard guidance based on forecast output from HREFv3, GEFS, and 
HRRRv4. 

o For active tornado days at both Day 1 and 2 lead times, the ML algorithm 
known as “Nadocast” performed best overall along with an ensemble of 
guidance products, although for the Day 2 lead times differences in mean 
subjective ratings were smaller relative to Day 1. 
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o For hail, Nadocast was the top performer at both Day 1 and 2 lead times, 
and the differences in mean subjective ratings were notable larger at the 
Day 2 lead times relative to Day 1. 

o For wind, the HREF-based ML random forest algorithm performed best for 
Day 1 and 2 lead times. 

• Examined various deterministic CAM systems within the CLUE using HRRRv4 
as a baseline. 

o In blinded 00Z Day 1 evaluations, HRRRv4 was the clear top performer for 
simulated reflectivity and UH, 2-m temperature, SBCAPE, and 6-h QPF, 
while RRFS performed best for 2-m dewpoint. 

o At Day 1, NSSL MPAS RT performed notably better than RRFS for 
simulated reflectivity and UH, and performed similarly to RRFS for 
environment and QPF fields. 

o GFDL FV3 and NASA GEOS FV3 were the worst performing flagship 
models for every blinded evaluation at both Day 1 and 2 lead times. The 
only exception was that NASA GEOS FV3 performed slightly better than the 
NAM Nest for 2-m dewpoint at Day 2. 

o In direct comparisons between 0000 UTC initialized RRFS and HRRR, 
RRFS was on average rated worse than HRRR for reflectivity and UH, 
updraft speed, 6-h QPF, SBCAPE, 2-m temperature, and 2-m dewpoint. 
RRFS was rated slightly better than HRRR for 10-m wind speed. For 1200 
UTC initializations, HRRR and RRFS performance was more comparable 
relative to the 0000 UTC initializations, and once again RRFS had the 
advantage for 10-m wind speed. 

o In direct comparisons between RRFS and HRRR from 2100 and 0000 UTC 
initializations focused on 0-12 h lead times, the HRRR had superior 
performance at every time examined at each initialization for reflectivity and 
UH, 2-m temperature, 2-m dewpoint, and SBCAPE. 

o In comparisons of three MPAS configurations run by NSSL, the one 
initialized from HRRR that used NSSL microphysics performed best (MPAS 
HN). 

o In comparisons between a 1-km grid-spacing WRF-ARW configuration 
(NSSL1) and the HRRR, the NSSL1 did not have an apparent advantage in 
forecasting convective evolution and tornadoes using 0-2 km AGL UH as a 
proxy, but the NSSL1 did have a significant advantage in forecasting severe 
wind using maximum 10-m wind speed as a proxy. 

• Examined various ensemble CAM systems within the CLUE using HREFv3 as a 
baseline. 

o In direct comparisons between 0000 UTC initializations of RRFS and HREF, 
RRFS was rated slightly worse than HREF for UH and updraft speed, while 
10-m wind speed and composite reflectivity were rated similarly. RRFS was 
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rated slightly worse than HREF for 2-m temperature, 2-m dewpoint, and 
SBCAPE. 

o In comparisons of various Day 1 forecasts from 1200 UTC initialized RRFS 
configurations that included mixed-physics and time-lagging, mean 
subjective ratings were tightly clustered, but HREF still had the highest 
mean ratings. Mixed-physics, time-lagging, and combinations of mixed-
physics and time-lagging did not result in any improvement relative to the 
single-physics RRFS. 

o In comparisons of Day 2 forecasts from 1200 UTC initialized RRFS 
configurations, HREF significantly outperformed the all of the RRFS 
configurations. Similar to Day 1, mixedphysics, time-lagging, and 
combinations of the two strategies did not result in any improvement relative 
to the single physics RRFS for Day 2. 

o In comparisons of NCAR FV3 and NCAR MPAS ensembles at Day 3-5 lead 
times, the MPAS ensemble received significantly higher mean subjective 
ratings. At times, forecast value was noted in these CAM ensembles all the 
way to Day 7, which was the longest lead time examined. 

• Various other projects and products were assessed and evaluated related to 
severe weather prediction, including machine-learning approaches for severe wind 
and convective mode probabilities, mesoscale and storm-scale analyses, and 
global ensemble forecasts for severe weather applications. 

o Two machine-learning-based algorithms were used to diagnose the 
likelihood that severe wind reports were actually associated with winds ≥ 50 
knots. The algorithm that used a stack generalized linear model (GLM) 
received slightly higher mean subjective ratings than a gradient-boosted 
machine (GBM) algorithm. 

o Three algorithms for producing extended-range total severe forecasts 
based on GEFS for Days 3-7 were examined. The GEFS Operational ML 
algorithm was the clear top performer relative to GEFS Reforecast ML and 
GEFS Reforecast Cal. 

o A neural-network algorithm was trained using predictors from the 
operational HRRR to produce tornado, wind, and hail probabilities. Two 
versions were tested: one that used convective mode information and one 
that did not. The version with convective mode information received slightly 
higher ratings for tornado and wind, while there was little difference for hail. 

o Two versions of 3D-RTMA with HRRR and RRFS backgrounds were 
evaluated. The RRFS background was most frequently rated “about the 
same” or “slightly worse” relative to the HRRR version. Additionally, the two 
versions of RTMA and SPC mesoanalysis were ranked from best to worst. 
3D-RTMA HRRR received the best rankings, followed by SPC 
mesoanalysis and 3D-RTMA RRFS. 
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o 15-minute maximum forecasts of 80-m winds, 2-5 km AGL UH, and column-
maximum updraft speed from WoFS were used as a proxy for the analysis 
of severe weather. Overall, the WoFS ensemble analysis fields were 
positively viewed in terms of lining up with radar-derived proxies of severe 
weather, preliminary local storm reports, and a subjective assessment of 
severe weather based on the environment. 

o A random forest ML algorithm called WoFS-PHI was used to combine 
information from ProbSevere Version 2 and WoFS to produce spatial 
hazard probabilities at 0-3 h lead times. In comparisons of 7.5-, 15-, 30-, 
and 39-km radii used to generate the probabilities, participants generally 
favored the 15- and 30-km radii. Participants generally liked the spatial 
precision of WoFS-PHI and found the product most useful when storms 
were just beginning to initiate. However, participants wanted to see higher-
magnitude probabilities, especially for smaller radii. 

 

Overall, the 2023 SFE was successful in testing new forecast products and 
modeling systems to address relevant issues related to the prediction of hazardous 
convective weather. The findings and questions generated during the 2023 SFE directly 
promote continued progress to improve forecasting of severe weather in support of the 
NWS Weather-Ready Nation initiative. In subsequent years, we plan to continue exploring 
the potential forecasting applications of Warn-on-Forecast, continue examining strategies 
for CAM ensemble design, accelerate work with our partners to optimize the UFS for CAM 
forecasting applications, and explore new ways to leverage AI/ML-based strategies for 
calibrating and post-processing CAM output to aid forecasters. Additionally, we expect 
that this work will take on particular importance and assist with evidence-based decision 
making as NOAA moves forward with its plans for a Unified Forecasting System. SFE 
2023 marked a return to in-person participation and was the first hybrid experiment (i.e., 
both in-person and virtual participation). We plan to continue with a hybrid format in 
subsequent experiments, as having in-person participation is much more conducive to 
science-based discussions and establishing new collaborations, while virtual participation 
enables people to participate that are unable to attend in-person, which expands the SFE 
scope. 
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APPENDIX  

 

Time (CDT) 
  

8:00 AM – 8:45 AM  (Optional) Map Analysis, Data Loading, and Networking 

In-Person (Optional) 

8:45 AM – 9:00 AM  Overview of Yesterday’s Severe Weather 

Hybrid All (David Imy) 

9:00 AM – 10:30 AM Model & Outlook Evaluation (Orientation, Surveys, and Discussion) 

Hybrid Groups (Group 1; Group 2; Group 3) 

10:30 AM – 10:45 AM Break 

10:45 AM –  11:00 AM Evaluation Highlights 

Hybrid All (Group 1; Group 2; Group 3) 

11:00 AM – 11:15 AM Weather Briefing 

Hybrid All (David Imy) 

11:15 AM – 12:30 PM Group Forecasting Activity (Coverage and Conditional Intensity 

Outlooks)  

In-Person R2O (Day 1); In-Person Innovation (Days 3 & 4); Virtual (Day 2) 

12:30 PM – 2:00 PM Lunch/Break 

Science Discussion (Wednesdays @ 1:15) 

2:00 PM – 2:15 PM Update on Today’s Weather 

Hybrid All (David Imy) 

2:15 PM – 3:15 PM Individual Forecasting Activity (Mesoscale Discussions and Discussion) 

In-Person R2O (Meso-beta MD); In-Person Innovation (WoFS MD); Virtual 

(WoFS MD) 

3:15 PM – 4:00 PM Individual Forecasting Activity Continued (MD & Day 1 Updates) 

In-Person R2O (Day 1 Update); In-Person Innovation (WoFS MD); Virtual 

(WoFS MD) 

Table 2. Schedule for Tuesday – Friday. On Monday, the schedule is similar except the period 9-11am is devoted to 
training and introductory material.  
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